
MODELING CRIME RESPONSE TO DETERRENCE: EXISTENCE OF

SOLUTIONS, OPTIMAL POLICIES, AND FAIRNESS

A PREPRINT

Yosia Nurhan

School of Mathematics

Georgia Institute of Technology

Atlanta, GA 30332

yosia@gatech.edu

Martin B. Short ∗

School of Mathematics

Georgia Institute of Technology

Atlanta, GA 30332

mbshort@math.gatech.edu

June 25, 2025

ABSTRACT

We study a model in which rational agents decide whether or not to commit crime based on a utility1

calculation, influenced by a judge who sets a society-wide threshold corresponding to the likelihood2

of an individual being found guilty and a legislator who sets a society-wide punishment level. We3

study how the overall crime rate is influenced by the judge’s threshold and the legislator’s punishment4

level, propose an objective function for the judge and legislator to minimize, and study the optimal5

threshold and punishment levels for this objective. We then consider the case in which the overall6

society is subdivided into multiple groups with varying characteristics, introducing a constraint on7

fairness in treatment between the groups. We study how an optimal threshold and punishment level8

might be chosen under this fairness constraint, what ramifications the constraints have on outcomes9

for individuals, and under what circumstances the constrained optimum agrees with the unconstrained10

optimum.11

1 Introduction12

Since at least the work of Becker, the study of crime and punishment as a problem of economics and choice has received13

significant attention [2, 3, 4, 5, 6, 7, 8, 9]. Framed simply, one can conceptualize individuals as rational agents choosing14

whether or not to commit crimes based on the estimated utility of the two competing choices, while the justice system,15

by setting standards of proof for conviction and the severity of punishments imposed, attempts to influence this choice16
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in some desired way. Questions then arise as to what the thresholds of evidence or levels of punishments should be that17

will best optimize some stated objective function; for example, to minimize expected crime rates.18

Becker asked how many resources and how much punishment should be used to enforce different kinds of legislation.19

There, the optimal decisions minimize social loss in income from offenses – sum of damages, costs of apprehension,20

costs of conviction, and costs of carrying out punishments. This choice of optimal criteria and how it is calculated has21

led to more discussions. For example, in Becker, the damage to society is the cost of the offense minus the gain to22

the offender. In other words, the gain for the offender is counted as a gain for society – leading to the conclusion that23

society should allow efficient crimes. In response, Stigler posits that an offender’s illicit gains should not be counted as24

society’s gains, suggesting a change to what the legislators should optimize. This view is not without its problems,25

since society’s decision on what counts as illicit gains changes throughout time [5]. Others have circumvented the26

issue by focusing on other optimal conditions or narrowing down the details of the illicit activity being considered.27

For example, Raskolnikov focused on crime where the illicit gains always equal the harm done. Curry and Doyle28

introduced a voluntary market option for individuals to achieve the same objective as they would with criminal behavior.29

With that, Curry and Doyle showed that minimizing the cost of crime corresponds with maximizing social welfare.30

The possibilities to be considered are numerous; Polinsky and Shavell gives an excellent overview and discussion on31

deterrence modeling considerations.32

At the same time, a large body of work shows that the justice system often has differential effects on various33

subgroups of the overall population [13, 14, 15, 16]. Motivated by this, some recent works on the economics of crime34

have begun to build various metrics of “fairness” into the objective function. A fundamental difficulty with this task is35

that consensus on a formal definition of fairness is lacking. Further, it is known [17, 18] that some fairness metrics36

are inherently incompatible with others, such that both cannot possibly be achieved simultaneously. And, since these37

metrics often test the “outcome” of an algorithm, the issue of fairness is further complicated by the infra-marginality38

problem [19]. Which definition of fairness is most desirable transcends mathematics and requires moral arguments and39

philosophical discussions [20, 21].40

Despite these caveats about fairness, generally researchers on the economics of crime simply choose a plausible41

notion of fairness and proceed from there, cognizant that their choice may not be shared by all. For example, Persico42

proposed a model that imposes a fairness restriction for the police such that police behavior is defined as fair when they43

police two subgroups with the same intensity; this is coupled with the goal of maximizing the number of successful44

inspections. Persico conclude that, under certain conditions, forcing the police to behave more fairly reduces the overall45

crime rate. As an alternative notion, Jung et al. considers fairness as an equality in conditional false positive rates46

between groups, and also shows that the crime rate is minimized when this constraint is upheld. Our work adopts this47

same notion of fairness, and shares many other traits with Jung et al.. However, due to some key differences between our48

model and that of Jung et al., we find that equalizing false positive rates between groups generally does not minimize49

crime, nor optimize a general objective function, if it is indeed even possible in the first place. However, we show that50

under certain cirumstances and objective function choices, the fair scenario is in fact the global optimizer.51
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The remainder of this work is summarized as follows. In Section 2 we will discuss Jung et al.’s baseline model and52

introduce our own, highlighting the key differences. In Section 3, we will explore how the crime rate of a group reacts53

with respect to the threshold τ set by the judge and the punishment level κ set by the legislator. Then, we introduce an54

objective function and find optimal values of τ and κ under a variety of circumstances. In Section 4 we extend our55

analysis to the case of two groups, and explore how a notion of fairness impacts the objective function.56

2 Setup and Baseline Model Overview57

We start with a version of Jung et al.’s model. Individuals in a societal group k make a binary decision to commit crime58

(c) or to remain innocent (i). An individual that chooses to commit crime receives reward ρ, while an individual that59

chooses to not commit crime receives reward ν. The difference between these two quantities is γ ≡ ρ− ν, and varies60

from person to person within the group since opportunities both within and outside of crime might naturally vary; let61

the density Γk(γ) represent the distribution of this quantity within the group. Clearly, those individuals with γ ≤ 062

have no quantitative incentive to commit crime, while those with γ > 0 do. We will assume throughout that the density63

Γk is strictly positive at all positive γ values, indicating that it contains some mass in the positive γ region so that there64

are at least some individuals who are motivated to commit crime.65

Each individual within the group may come under suspicion or scrutiny as a possible criminal and be “investigated”66

or “policed.” Let the group-dependent policing rate for those who choose to commit crime and those who do not be67

denoted as αk and βk, respectively. We will generally assume that αk ≥ βk throughout, in the hope that criminals are68

at least as likely to be investigated as those who are innocent. Each individual who comes under such scrutiny will69

produce a random “signal” s ≥ 0 that represents effectively the amount of evidence that appears to indicate guilt for70

that individual. The distribution of signals for criminals and innocents within group k are denoted as θck(s) and θik(s),71

respectively. We assume, as in Jung et al., that these signals exhibit a Monotone Likelihood Ratio Property (MLRP),72

meaning that θc
k(s)

θi
k(s)

is nondecreasing in s. That is, a higher signal s never denotes a lower likelihood of being innocent vs73

guilty. For concreteness, throughout the rest of this work we will assume that the signals s are drawn from exponential74

distributions75

θik(s) = λke
−λks, λk > 0 (1)

θck(s) = ωke
−ωks, ωk > 0 (2)

and we define76

pk ≡ ωk

λk
< 1

to guarantee the MLRP. One can interpret the parameter pk as essentially indicating how “easy” it is to determine those77

who are guilty vs innocent within the group k, with pk close to zero indicating that this determination is relatively easy,78

and pk near one indicating that the determination is relatively hard.79
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Finally, a judge determines whether the evidence indicates guilt, denoted by z = 1, or innocence, denoted by z = 0,80

for each individual under scrutiny. In contrast to Jung et al., we focus entirely on the case in which the judge determines81

guilt versus innocence based on the posterior probability of the individual being a criminal, rather than making the82

decision based directly on the signal. That is, an individual is classified as guilty if the judge determines that their83

posterior probability of being a criminal given their signal, their group, and a prior belief on guilt is larger than some84

threshold 0 < τ < 1, i.e. P (c|s, k) > τ ; otherwise they are found innocent. The details of this assessment will be85

provided later. Jung et al. instead focus on policies that are based directly on the signal itself, and which are also based86

on simple thresholding. There is a discussion within Jung et al. of the possibility of posterior thresholding, in which the87

authors point out that there is rough equivalency between these two methods – a threshold on signal can be translated88

to a threshold on posterior and vice versa – as we will elaborate on below. However, for the policy problem that is89

presented in Jung et al., minimizing total crime across groups, it is generally true that the optimal policy will correspond90

to posterior thresholds that are different for different groups. Here is where our approach fundamentally differs: we will91

insist in this work that only one posterior threshold exist, τ , and then frame our policy problem under this constraint.92

We make this choice because one focus of this work is on exploring fairness within the context of this problem, and93

having separate posterior thresholds for each societal groups may violate general ethical and/or legal standards held in94

many societies; this despite evidence that in reality these standards are sometimes violated [13, 14, 15].95

As a final aspect of the model, anyone found guilty receives punishment κ, set by the legislator, regardless of group.96

As with the common posterior threshold mentioned above, this assumption comports with general ethical and/or legal97

standards held in many societies, despite evidence that in reality these standards are sometimes violated [13, 14, 15].98

Given the above, an individual then chooses to commit crime if their expected net utility from committing crime is99

higher than not committing crime. The inequality governing an individual’s decision to commit crime then becomes100

ρ− αkκP (z = 1|c, k) > ν − βkκP (z = 1|i, k). (3)

Rearranged, we have101

κ∆k < ρ− ν = γ, (4)

where102

∆k ≡ αkP (z = 1|c, k)− βkP (z = 1|i, k) = TPRk − FPRk (5)

is a measure of the difference in probability of being found guilty for criminals and innocents within group k, and103

is therefore the difference between the true positive rate TPRk and false positive rate FPRk for group k. Then the104

overall crime rate, measured as the fraction of people choosing to commit crime for group k satisfies105

Ck =

∫ ∞

κ∆k

Γ(γ) dγ. (6)
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We assume that the judge has knowledge of the relevant parameters and distributions for all groups, and can then use106

this knowledge to aid in determining guilt versus innocence for an individual producing a given signal s. Specifically,107

the judge makes a Bayesian posterior calculation on the probability of an individual being a criminal based on their108

signal, group membership, and the known society-wide crime rate C, then decides guilt vs innocence based on the109

threshold value τ on this posterior probability. Let the society-wide crime rate be computed as110

C =

G∑
k=1

NkCk ,

where G is the number of distinct societal groups (however these might be defined) and Nk and Ck are the fraction of111

the total society that belongs to group k and the crime rate of group k, respectively. The posterior probability of an112

individual being a criminal after observing some signal s given a group k is113

P (c|s, k) = αkθ
c
k(s)C

αkθck(s)C + βkθik(s)(1− C)
. (7)

We note that, from the point of view of an accurate posterior probability, (7) should use Ck rather than C. However,114

doing so would essentially represent a prejudice on the part of the judge toward convicting certain groups more readily115

than others. Since one focus of our work is enforcing fairness within the model, and such a prejudice could readily be116

construed as unfair, we opt to consider the less biased calculation that uses C rather than Ck.117

Recall that an individual is classified as guilty (z = 1) if their posterior probability of being a criminal is greater118

than the threshold set by the judge, P (c|s, k) > τ , with 0 < τ < 1. Then, a crime rate of zero would lead to no one119

ever being found guilty via (7). However, in this circumstance those individuals with γ > 0 will certainly commit120

crimes, since they will be guaranteed not to be punished, leading to a contradiction. Hence, it must be the case that121

Ck > 0, i.e., there will always be some non-zero level of crime if individuals with γ > 0 exist. Because of this and our122

assumption about the distributions θ, without loss of generality we can rewrite (7) as123

P (c|s, k) =
[
1 +

βkθ
i
k(s)

αkθck(s)

(1− C)

C

]−1

. (8)

Due again to the MLRP for the distributions θ, for any given crime rate C < 1 the posterior probability of guilt124

increases with increasing signal, approaching unity as s→ ∞ and having a minimum value at s = 0; for C = 1 the125

probability is always (correctly) unity for any signal. Then for any C < 1 and decision threshold τ , there will always126

exist a threshold signal value sτ such that only those individuals with s ≥ sτ are found guilty. If τ ≤ P (c|0, k) ≡ τ0127

this threshold is just sτ = 0: everyone is always found guilty in this case. Otherwise, the signal threshold is given by128

sτ = − 1

λk − ωk
ln

(
pkαk

βk
χ

)
, (9)

where129

χ ≡ C

1− C

1− τ

τ
.
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To reiterate, whenever130

fk ≡ pkαk

βk
χ ≤ 1 (10)

then the signal threshold is given by (9); otherwise we are in the regime where τ ≤ τ0 and everyone is found guilty131

for all signals, so that sτ = 0 and we can effectively set fk = 1. This relationship highlights the equivalency between132

posterior and signal thresholding mentioned above.133

We can now compute the total probability of being found guilty conditional on investigation for both criminals and134

innocents of group k:135

P (z = 1|i, k) = P (s ≥ sτ |i, k) =
∫ ∞

sτ

θik(s) ds = e−λksτ = [min(fk, 1)]
1

1−pk (11)

P (z = 1|c, k) = P (s ≥ sτ |c, k) =
∫ ∞

sτ

θck(s) ds = e−ωksτ = [min(fk, 1)]
pk

1−pk . (12)

Multiplying the quantities in (11) and (12) by β and α, respectively, gives the false positive rate FRPk and true positive136

rate TPRk for group k. Plugging equations 11 and 12 into equation 5, and being careful of inequality 10 we have137

∆k =

αkf
pk

1−pk

k − βkf
1

1−pk

k , fk ≤ 1

αk − βk, fk > 1.

(13)

We observe that since 0 < pk < 1, pk

1−pk
< 1

1−pk
. So, f

pk
1−pk

k ≥ f
1

1−pk

k when fk ≤ 1. Combined with our assumption138

that αk ≥ βk we have TPRk ≥ FPRk and ∆k ≥ 0.139

Given all of the group-dependent parameters, as well as τ and κ, (6) is an implicit equation for the crime rate Ck. In140

the remainder of this work, we study solutions to this equation in both the single group and two group cases, and use141

the crime rates obtained to solve optimization problems for τ and κ.142

3 One group143

In this section we will focus on the properties of solutions to equation 6 for one single group. For ease of reading, we144

drop the subscript k since in this case all parameters and variables belong to a singular group, and in this case C and Ck145

are identical. We define two functions based on the LHS and RHS of equation 6:146

g(C) = C (14)

h(C) =

∫ ∞

κ∆

Γ(γ) dγ. (15)

The crime rate solves g = h. The function g is straightforward, but we will need to explore the function h further.147

First, we will show that for some parameter region, h has a minimum in the interior of its domain as described in the148

following lemma.149
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Lemma 3.1. h(C) has a minimum at C∗ = τ when pα
β < 1. The minimum is

h(C∗) =

∫ ∞

κ∆∗

Γ(γ) dγ

where

∆∗ =

(
α

(
pα

β

) p
1−p

− β

(
pα

β

) 1
1−p

)
is a constant.150

Proof. Note that equation 13 is equivalent to151

∆ =


αf

p
1−p − βf

1
1−p , C < 1

1+pα
β

1−τ
τ

α− β, C ≥ 1
1+pα

β
1−τ
τ

.

(16)

And so, when C > 1
1+pα

β
1−τ
τ

≡ C0,152

h(C0) =

∫ ∞

κ(α−β)

Γ(γ) dγ, (17)

a constant with respect to C. Note that153

h(0) =

∫ ∞

0

Γ(γ) dγ (18)

is also a positive constant. The derivative of h is computed to be154

dh

dC
=

−Γ(κ∆)κd∆
dC = −q(αf−1p− β), C < C0

0, C > C0.

(19)

where155

q ≡ Γ(κ∆)κ
1

1− p

1

C(1− C)
f

1
1−p > 0. (20)

Then, any critical point C∗ of h(C) in (0, C0) can only occur when αf−1p − β = 0. Substituting f from (10) and156

solving, we find the critical point C∗ = τ , which is also equivalent to χ = 1. However, this critical point will exist iff157

C∗ < C0; after some algebra this is equivalent to158

pα

β
< 1. (21)

Under this condition, we have that for C < C∗, dh
dC < 0, while for C∗ < C < C0 we have dh

dC > 0, indicating a159

minimum at C = C∗. Further,160

h(C∗) =

∫ ∞

κ∆∗

Γ(γ) dγ (22)
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where161

∆∗ =

(
α

(
pα

β

) p
1−p

− β

(
pα

β

) 1
1−p

)
(23)

is a constant.162

The proof above also leads to the following lemma:163

Lemma 3.2. h(C) is monotonically decreasing on (0, C0) when pα
β ≥ 1.164

Next, we will prove a lemma that will help us understand how many times g and h intersect which corresponds to165

the number of solutions to the crime rate equation.166

Lemma 3.3. dh
dC < 1 when 1− 1

qβ ≤ pα
β for C ∈ (0, C0).167

Proof. For ease of reading we define ϕ(C) = αf−1p− β = β 1−C
C

τ
1−τ − β. We first compute168

dϕ

dC
=

d

dC
(β

1− C

C

τ

1− τ
) (24)

= −β 1

C2

τ

1− τ
< 0. (25)

So, in the domain C ∈ (0, C0),169

ϕ(C0) < ϕ(C) (26)

Here, ϕ(C0) = pα− β. So, by rearranging our initial assumption and since f−1 > 1,170

−1

q
≤ pα− β < αf−1p− β. (27)

Rearranging, we have171

dh

dC
= −q(αf−1p− β) < 1. (28)

172

The lemmas above lead to the following uniqueness theorem.173

Theorem 3.4. If 1− 1
qβ ≤ pα

β for C ∈ (0, C0) then there is a unique solution to equation 6.174

Proof. Recall from equation 18 that 0 < h(0) ≤ 1. Also, h(1) < h(0) ≤ 1 from properties of cumulative distribution175

functions and our assumption that Γ > 0. We have g(0) = 0 and g(1) = 1. If pα
β ≥ 1, then h(c) is monotonic by176

lemma 3.2. And so there must only be one intersection between g(C) and h(C). If 1− 1
qβ ≤ pα

β < 1 for C ∈ (0, C0),177

then by lemma 3.3, dh
dC < 1 = dg

dC . Similarly, there must be only one intersection between g(C) and h(C).178
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However, if it is the case that pα
β < 1− 1

qβ for some C ∈ (0, C0), there could be multiple solutions, as illustrated in179

Figure 1. To summarize the findings of the theorems above and as illustrated in Figure 1, when pα
β ≥ 1 there is a unique180

crime rate for any given τ and κ, and the crime rate is increasing with τ for any τ > τ0; that is, crime is minimized181

when everyone investigated is found guilty. On the other hand, when pα
β < 1, there are potentially multiple crime rates182

consistent with (6) for certain τ and κ. However, there is a threshold τ∗ = C∗ = h(C∗) that yields the smallest crime183

rate possible, in which not everyone investigated is found guilty.184

Recall that p = ω
λ < 1 is the ratio of the decay rate of the signal for innocents and the decay rate of the signal for185

criminals, and that p closer to 1 indicates that the signal of the criminals and innocents are less distinguishable while186

lower p indicates that the signal of criminals and innocents are more distinguishable. Similarly, the ratio β
α denotes how187

different the policing rate is for innocents vs. criminals, with a low ratio meaning that innocents are policed notably less188

than criminals and a ratio approaching 1 indicating that they are policed at essentially the same rate. Let us rewrite the189

region pα
β < 1 instead as p < β

α . Then this region corresponds to one in which the signals between the innocents and190

the criminals are more distinguishable than their policing rate ratio would suggest. Intuitively, this means that the judge191

is able to add something valuable to the guilt determination process, and further narrow down who is guilty vs innocent192

beyond the relatively crude distinction made by the police. Because of this, the judge can choose a threshold τ∗ that193

minimizes crime rate without finding everyone guilty, as shown above. Conversely, the region pα
β ≥ 1, equivalently194

p ≥ β
α , corresponds to the case where the signals between the innocents and criminals are at most as distinguishable as195

their policing rate ratio would suggest. In other words, the judge is not as efficient as the police in determining guilt vs196

innocence, and does not add much of value to the process. Here, the judge minimizes crime by just finding everyone197

guilty, as in this case the police will have already largely been able to determine guilt before any trial occurs. Generally198

it seems plausible that the former case, where the judge is better able to determine guilt vs innocence than the police, is199

the more realistic of the two.200

In the next two subsections, we will discuss the case where there could be multiple solutions. Then, we will explore201

how the crime rate changes in relation to the threshold τ and the punishment level κ and consider a reasonable objective202

function for the judge and the legislator to minimize.203

3.1 Remark on Multiple Crime Rates204

As described above, the solution to equation 6 might not be unique in some parameter regions. In that case, it is205

not immediately clear which crime rate would manifest, as the overall model assumes that criminals can determine206

their expected utilities perfectly, and those depend on the crime rate observed. However, we will show that, by our207

assumption that individuals want to maximize their utility, the lowest consistent crime rate will be the one to occur.208

Suppose there are multiple solutions to 6, labeled C1 < C2 < . . . < Cn. Each such crime rate can be thought209

of as representing a Nash Equilibrium of the system. That is, any solution Ci corresponds to a value γi that has two210

properties: Ci =
∫∞
γi

Γ(γ)dγ (the solution is consistent); and if individuals with γ > γi commit crimes and those with211

9
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(a) One intersection (b) Multiple intersections

Figure 1: Intersection(s) of g(C) and h(C). The dashed lines from top to bottom corresponds to the regions pα
β ≥ 1,

1− 1
qb <

pα
β < 1, and pα

β < 1− 1
qb , respectively. The solid horizontal line indicates the region in which f = 1. Panel

(a) is constructed at a lower threshold τ than that used in (b).

γ < γi do not, no individual is tempted to deviate from this unilaterally (a Nash Equilibrium). Note that these threshold212

γ values lie in the order γn < γn−1 < . . . < γ1.213

However, the expected utilities for individuals among these Nash Equilibria are not equal. Note that those with214

γ > γ1 will commit crimes no matter which equilibrium is selected, and those with γ < γn will not commit crimes215

no matter which is selected, so that we need only consider those individuals with γn < γ < γ1 and determine which216

equilibrium they might prefer. For a fixed behavior – commit crimes vs not – utility is decreasing with increasing217

probability of punishment, which itself increases with crime rate. Hence, for any given individual under consideration218

we need only contrast two of the equilbria: C1, in which case they do not commit crime and crime is as low as possible;219

and Cj , which is the lowest crime rate for which the corresponding γj is less than the γ value of the individual in220

question, which is the lowest crime state in which that person commits crime. Then this individual will prefer the221

equilibrium at C1 so long as222

ν − βκP (z = 1|i;C1) > ρ− ακP (z = 1|c;Cj) .

Upon rearranging terms and writing existing quantities in terms of γ1, the above inequality is equivalent to223

γ < γ1 + ακ [P (z = 1|c;Cj)− P (z = 1|c;C1)] .

Noting that the term in brackets is positive, then this inequality holds for all individuals in question, meaning that they224

all prefer the lowest crime equilibrium above all others. Therefore, even in cases where there are multiple solutions to 6,225

one would expect that the lowest crime solution should be the one obtained.226

3.2 Judge’s and Legislator’s Objective227

We now model the choice of τ and κ as optimization problems for the judge and legislator. As a very simple first228

possibility, perhaps the judge and legislator are working in unison to simply minimize the crime rate C. Given the results229

10
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above, for a fixed punishment level κ crime is minimized in one of two ways. First, if pα
β ≥ 1, then crime is minimized230

at rate C0 = h(C0) from (17), since h(C) is monotonically decreasing on (0, C0) in this case. This corresponds to231

selecting any threshold τ ∈ (0, τ0], in which case all individuals are found guilty, and τ0 = 1/
[
1 + β

pα
1−C0

C0

]
. If232

pα
β < 1, then crime is minimized at rate C∗ = h(C∗) from (22), since that is where h(C) is minimized in this case233

(and cases of multiple solutions here will still exhibit the smallest crime rate possible). This corresponds to selecting234

threshold τ = τ∗ = C∗; in this case not all individuals are found guilty. In either of these cases, the crime rate simply235

decreases with κ, indicating that arbitrarily large punishment should be sought, and no global minimum of crime truly236

exists.237

The objective of simply minimizing crime does not appear very satisfying. It suggests draconian punishment,238

ignoring the fact that these punishments are sometimes, unfortunately, meted out to innocent people. Further, it indicates239

that the posterior threshold for punishment should be very small – either small enough so that all are guilty, or set to240

match C∗ which is being made as small as possible – which generally conflicts with Western ideals that posteriors at241

least be “the preponderance of evidence,” if not higher.242

We therefore propose an alternative objective function. Certainly low crime is still desired, as that minimizes the243

impact of crime on victims, among many other things. However, this desire should be balanced against harm that could244

also be done to innocent individuals through erroneous punishment. We therefore propose that the judge and legislator245

might consider the objective function246

M = C + λκn(1− C)FPR. (29)

Here, λ > 0 and n > 0 are both parameters that change the balance between desiring low crime vs low punishment247

for innocent individuals who are found guilty. We note that for n = 1, a seemingly natural choice, the second term248

is directly proportional to the total amount of punishment meted out to innocents, with constant of proportionality λ.249

However, as we will show below, choosing n = 1 leads to an unsatisfying solution to the optimization problem.250

While the natural choice of parameters over which to optimize M are κ and τ , it is easier to analyze the system251

by choosing to parameterize with κ and χ. This parametrization is equivalent, so long as we note that some κ, χ252

combinations may not be feasible. Specifically, any κ, χ combination has a well defined crime rate, and that crime rate253

when combined with χ gives a well defined τ . However, for a given κ, there could exist two (or more) values χ1 < χ2,254

with corresponding C1 < C2 that both give the same τ . As noted above, in such cases when a single τ gives rise to255

multiple crime rates, only the lowest rate is realizable, hence the combination κ, χ2 is not feasible. While this could256

potentially be a problem moving forward, we note that this issue will not arise when pα
β ≥ 1, and even when pα

β < 1,257

we can be sure that any κ with χ ≤ 1 is feasible. This is because, when a single τ could yield multiple crime rates via258

(6), either one of those crime rates has χ ≤ 1 and the others have χ > 1, and the χ ≤ 1 rate is the feasible one, or all of259

the crime rates have χ > 1. We will revisit this point later.260
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Seeking critical points of M gives the following equations261

∂M

∂κ
= −Γ(κ∆)∆(1− λκnFPR) + λnκn−1(1− C)FPR = 0 (30)

∂M

∂χ
=

[
−Γ(κ∆)κ

∂∆

∂FPR
(1− λκnFPR) + λκn(1− C)

]
∂FPR

∂χ
= 0. (31)

After some algebra one can show that in order for there to exist a simultaneous solution to the equations above, it must262

be the case that263

χ =
n− 1

p

n− 1
≡ χo. (32)

Note that since χ > 0, equation 32 requires either that n < 1 or that n > 1
p > 1 in order for such a critical point to exist.264

The n < 1 case always leads to f > 1 and therefore should not be considered further. Assuming n > 1
p , then χo < 1,265

which means this is certainly a feasible point. However, we must still determine if f = pα
β χo ≤ 1. This is automatically266

the case when pα
β < 1; that is, when crime has a minimum at C∗. However, if pα

β ≥ 1, then this requirement places an267

upper bound on n for the existence of the critical point, such that n < α−β
αp−β .268

Assume for now that all requirements are met for a physically relevant χo. Let FRPo and TPRo be the false269

positive and true positive rates obtained when χ = χo, and let ∆o = TPRo − FPRo. Then any interior critical points270

are located at (κo, χo), where κo satisfies271

−Γ(κo∆o)∆o(1− λκnoFPRo) + λnκn−1
o [1− C(κo,∆o)]FPRo = 0 , (33)

which in general would have to be solved numerically for κo. But, by considering the behavior of the above expression272

as κ→ 0 and κ→ ∞ we note that the above equation can be made to hold true at any κo > 0 by a careful choice of λ.273

Further, these λ values become arbitrarily large as κo → 0 and arbitrarily small (assuming boundedness of Γ at large274

arguments) as κo → ∞, so that any choice of λ should yield at least one solution κo.275

We now switch from χ to FPR, and check the boundaries of the domain, κ ∈ [0,∞) and FPR ∈ [0, β], to see276

whether the critical point(s) above are the only possibilities for a global minimum or not. If n < 1
p , the next few lines277

will show that M → 0 as κ → ∞ in a particular way, leaving no global minimum. To get M → 0, we need both278

C and λκn(1 − C)FPR tending to zero. As a result, we need κnFPR → 0. For this to happen as κ → ∞, we279

need FPR → 0. Now note that TPR = α
βpFPR

p. Since FPR → 0 and p < 1, FPRp ≫ FPR. And so, for the280

requirement that C → 0,281

C =

∫ ∞

κ∆

Γ(γ) dγ =

∫ ∞

κ( α
βp FPRP−FPR)

Γ(γ) dγ → 0 , (34)
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we need κ(αβFPR
p − FPR) → ∞. In particular, we need κFPRp → ∞. Equivalently, we need (κ

1
pFPR)p → ∞282

which is true iff κ
1
pFPR→ ∞. Rearranged,283

κ
1
p−n(κnFPR) → ∞. (35)

So, since κnFPR→ 0, we need κ
1
p−n → ∞ in a way that satisfies 35. This condition can only be satisfied if n < 1

p ,284

as claimed. As previously discussed, arbitrarily large punishments are not generally feasible, nor desired, so we will285

focus on the case where n > 1
p , where M → ∞ as κ→ ∞ so long as FPR ̸= 0.286

When FPR = 0, we have TPR = 0. In turn, ∆ = 0 and therefore κ∆ = 0. So,287

M = Cmax ≡
∫ ∞

0

Γ(γ) dγ. (36)

Similarly when κ = 0, κ∆ = 0 and so, C = Cmax and288

M = Cmax. (37)

We note that by (30), when κ = 0 and FRP > 0, ∂M
∂κ < 0, indicating that M = Cmax cannot be the global minimum.289

Similarly, by (31), as FPR→ 0 and κ > 0, ∂M
∂FPR < 0.290

When FPR = β then TPR = α and ∆ = α − β, and there is at least one point κ = κβ that could be a local291

minimum, which satisfies292

∂M

∂κ
= −Γ(κβ∆)∆(1− λκnββ) + λnκn−1

β [1− C(κβ ,∆)]β = 0. (38)

At the same time, at (κβ , β),293

∂M

∂FPR
= λκnβ [1− C(κβ∆)]

(
−αp− β

α− β
n+ 1

)
. (39)

Note then that if pα
β < 1, the case in which crime is minimized at C∗, ∂M

∂FPR > 0 at (κβ , β), and so this point is294

not a minimum. Alternatively, if pα
β ≥ 1, then ∂M

∂FPR > 0 and (κβ , β) is not a minimum when n < α−β
αp−β , which295

corresponds to the case in which the critical point(s) (κo, χo) exist. The final possibility is that pα
β ≥ 1 and n > α−β

αp−β ,296

in which case there are no critical point(s) (κo, FPRo) and there is a local minimum for at least one point (κβ , β).297

The above arguments lead to the following theorem:298

Theorem 3.5. When n > 1
p and either pα

β < 1 or n < α−β
αp−β there is a global minimum of M in the interior of the299

domain at (κo, FPRo). When n > 1
p , pα

β ≥ 1, and n > α−β
αp−β there is a global minimum of M along the boundary at300

(κβ , β). When n < 1
p , the objective function M → 0 as κ → ∞ and FPR → 0 in a particular way and M has no301

strict global minimum.302

The above results indicate that a wide array of “optimal” justice systems occur based on the choice of n and λ in303

(29). For example, a system with low C and high τ is optimal with a very small value of χo coupled with a somewhat304
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large κo, indicating an n only slightly above 1/p and a relatively small λ. Alternatively, as n → ∞, χ → 1. This χ305

corresponds to choosing τ∗ that solely minimizes the crime rate as in Lemma 3.1, in which C∗ = τ . In other words, as306

the scaling of M with κ grows ever larger, the judge’s best course of action is in solely minimizing the crime rate C,307

and in this case it is not possible to have both a low C and a high τ .308

Figure 2 is a contour graph that shows the behavior of the objective function M in a numerical simulation. In309

choosing the parameter values for the numerical simulation, we attempt to keep in mind what a reasonable society310

might have, though admittedly the parameters chosen are not based on any empirical values. We choose p = 0.2 for311

our simulation, a case where the signals of the criminals and innocents are relatively easy to distinguish. We set the312

policing rate of criminals at α = 0.8. Meanwhile, we set the policing rate of the innocents to be lower, at β = 0.2 —313

partially to set pα
β < 1, where the judge can minimize crime rate without finding all investigated individuals guilty.314

We choose γ ∼ N (−2, 3), giving a population in which the maximum possible crime rate is
∫∞
0

N (1, 3) = 0.25. We315

choose n = 6 to satisfy the condition of a global minimum in the interior as in Theorem 3.5. We choose the parameter316

λ to be 1 for simplicity. We found that (τ, κ) = (0.56, 0.82) minimizes M with value of 0.21; the crime rate is 0.20317

and the FPR is 0.02. In comparison, with the same parameters, and when κ = 0.82 is fixed, as in Lemma 3.1, the318

judge can minimize the crime rate even further to 0.19 with a lower threshold τ = 0.19, but with higher FPR = 0.18.319

Figure 2: Contour plot of M(κ, τ) with parameters λ = 1, n = 6, α = 0.8, β = 0.2 and p = 0.2. Here γ ∼ N (−2, 3).
This figure shows a minimum for M at (τ, κ) = (0.56, 0.82). The red dotted line plots τ0 for each fixed κ.

4 Two Groups320

Having covered several aspects of the model in the context of a single population, we now turn back to the possibility of321

multiple groups, specifically with notions of fairness between groups in mind. In the fairness in algorithms literature,322
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one definition of fairness that has been used is based on disparate impact: when the outcome of the algorithm323

disproportionately harms or helps specific social groups vs others. Within the context of criminal justice, one particular324

notion of fairness that removes a form of disparate impact is a requirement of parity of false positive (or negative,325

depending on context) rates across groups. That is, if a false positive refers, as it does in this manuscript, to convicting an326

innocent person, then one might want a fair “algorithm” to make sure that different social groups within the population327

all suffer this at the same (ideally low) rate.328

To include this notion of fairness in our discussion, we explore our model with two groups, denoted simply as329

groups 1 and 2. For comparison, we will first run the same analysis as in the one-group case without including the330

notion of fairness. In this case, the total crime rate C that appears in (7) is331

C = N1C1 +N2C2 = N1

∫ ∞

κ∆1

Γ1(γ) dγ +N2

∫ ∞

κ∆2

Γ2(γ) dγ , (40)

where N1 and N2 are proportions of the total population for groups 1 and 2, respectively. For the two group model to332

be meaningfully different from the one group model, we require that the two groups differ in their values for p and/or333

α, β. This is due to our restriction above that the crime rate used by the judge to determine guilt is the overall societal334

crime rate. Hence, if the two groups shared identical values for p, α, and β, then the lower bounds for each of the two335

integrals in (40) would be identical, and the two integrands could be combined into an overall societal distribution of Γ,336

leaving the one group problem.337

With similar proof ideas as in the previous section one can show that, assuming a fixed value for the punishment338

level κ, the lowest possible crime rate occurs at a well defined value for τ . We now define h(C) to be the RHS of339

equation 40. Without loss of generality, let group 1 be the group with the higher value of pkαk/βk; for any given τ and340

C, we then have f1 > f2. For a fixed τ , f1 = 1 will be achieved at a lower crime rate than needed for f2 = 1. Then we341

have the following theorem, which can be generalized to any number of finite groups:342

Theorem 4.1. Assume κ is constant. When p1α1

β1
< 1, C has a minimum of

C∗ = h(C∗) = N1

∫ ∞

κ∆1∗

Γ1(γ) dγ +N2

∫ ∞

κ∆2∗

Γ2(γ) dγ

where

∆k∗ =

(
αk

(
pkαk

βk

) pk
1−pk

− βk

(
pkαk

βk

) 1
1−pk

)
,

at τ = τ∗ = C∗ (χ = 1). When p2α2

β2
< 1 but p1α1

β1
> 1, C has a minimum of

Cm = h(Cm) = N1

∫ ∞

κ(α1−β1)

Γ1(γ) dγ +N2

∫ ∞

κ∆2∗

Γ2(γ) dγ,

at τ = τm = Cm (χ = 1). When p2α2

β2
> 1, C has a minimum of

C0 = h(C0) = N1

∫ ∞

κ(α1−β1)

Γ1(γ) dγ +N2

∫ ∞

κ(α2−β2)

Γ2(γ) dγ,
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for any τ ≤ 1

1+
p1α1
β1

C0
1−C0

.343

The theorem above already illustrates the possibility of a large disparity in impact between the two groups if crime344

is simply minimized. The clearest case is when p2α2

β2
< 1 but p1α1

β1
> 1, in which case minimizing crime means finding345

all investigated members of group 1 guilty, while some investigated members of group 2 are set free.346

4.1 Enforcing Parity of False Positive Rates347

We now consider what would be required to equalize false positive rates between groups 1 and 2. The false positive rate348

for group k is349

FPRk = βkP (z = 1|i) =

βkf
1

1−pk

k , fk < 1

βk, fk ≥ 1.

(41)

In the region where f2 ≥ 1, FPR1 = β1 and FPR2 = β2; all investigated persons are found guilty in this regime. In350

other words, the false positive rates for both groups equalize if and only if their investigation rates for innocents are351

equal, i.e. β1 = β2. When f2 < 1 but f1 ≥ 1, the false positive rates for both groups equalize if and only if352

β1 = β2f
1

1−p2
2 . (42)

Rearranging,353

χ =
β2
p2α2

(
β1
β2

)1−p2

≡ χf . (43)

However, for (43) to be valid, χ = χf must indeed lead to f2 < 1 and f1 ≥ 1. This implies354

β1
β2

< min

[
1,

(
p1α1

p2α2

) 1
p2

]
.

Note that this requirement is mutually exclusive of the one above.355

In the region where f1 ≤ 1, the false positive rates for both groups equalize if and only if356

β1f
1

1−p1
1 = β2f

1
1−p2
2 . (44)

If p1 = p2 = p, this will occur for any χ, but only if β1

β2
=
(

α1

α2

)1/p
. Otherwise, we rearrange to find357

χ =

β1
(
p1

α1

β1

) 1
1−p1

β2

(
p2

α2

β2

) 1
1−p2


(1−p1)(1−p2)

p2−p1

≡ χF . (45)

Note that for the equation above to be relevant, we still require f1 ≤ 1. This requires either i) p2 > p1 and358

β1

β2
>
[
p1α1

p2α2

]1/p2

or ii) p2 < p1 and β1

β2
<
[
p1α1

p2α2

]1/p2

.359
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We note that, within our model, enforcing parity of FPR generally does not minimize the crime rate, i.e. it is360

not generally true that χf = 1 nor χF = 1. In fact, for two groups with different p values, these cases can only be361

achieved for specific relationships between the policing rates of the groups, with the rates generally being required to362

differ in some ways. This is in contrast to the results of Jung et al., where the policy of minimizing crime rate also363

achieves parity of false positive rates, with equal policing rates. This difference is due to their assumption that the signal364

distributions for innocents and criminals are the same across groups.365

It is interesting to note that it is generally not possible to simultaneously equalize both the false positive rates and366

false negative rates of the two groups in our model. The false negative rate for group k is367

FNRk = 1− TPRk =

1− αkf
pk

1−pk

k = 1− αk

(
pk

αk

βk
χF

) pk
1−pk , fk < 1

1− αk, fk ≥ 1.

(46)

In the region where f2 ≥ 1, the false negative rates for both groups equalize if only if their investigation rates for368

criminals are equal, i.e. α1 = α2. Assume now that the false positive rates of the two groups are equal. In the region369

where f2 < 1 but f1 ≥ 1, the false negative rates for both groups are equal if and only if370

α1 = α2

(
p2
α2

β2
χf

) p2
1−p2

(47)

which is only satisfied when371

χf =
p2α1

β2
. (48)

Recall that χf is a constant defined by equation 43, so the false negative rates for both groups can be equal only if the372

parameters happen to satisfy the equation above. Finally, in the region where f1 ≤ 1, the false negative rates for both373

groups are equal if and only if p1 = p2 = p. When p1 = p2 = p, the false negative rates are equal for any χ, under the374

same parameter constraint as the false positive rate being equal. But if p1 ̸= p2, the false negative rates are equal when375

α1

(
p1
α1

β1
χF

) p1
1−p1

= α2

(
p2
α2

β2
χF

) p2
1−p2

. (49)

Simplifying by substituting equation 44, the equation above cannot be satisfied.376

4.1.1 Existence of Solutions377

For the remainder of our discussion of solutions with equal false positive rates, we only consider the case f1 < 1, as378

other solutions require situations in which all individuals are found guilty, which are inherently unsatisfying. Further,379

we note that some values of χF might be unfeasible; that is, a χF > 1 may only correspond to solutions that always380

allow for a lower crime solution for the same τ and κ. In such cases, it is simply not possible for the false positive rates381

to be matched within the confines of the model. For the sake of argument, assume that χF is feasible, generally meaning382

χF < 1. Then we seek a guarantee that there exists a pair (τ, C) will satisfy equations 40 and 45 simultaneously. We383
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will now show that the legislator, by appropriately choosing the punishment level κ, can always ensure such a pair,384

given some conditions specified in the following theorem:385

Theorem 4.2. If (τF , CF ) satisfies equation 45 and CF ≤ Cmax, where386

Cmax ≡ N1

∫ ∞

0

Γ1(r) dr +N2

∫ ∞

0

Γ2(r) dr, (50)

there exists a unique κ = κF such that (τF , CF ) satisfies equation 40.387

Proof. The assumption that (τF , CF ) satisfies equation 45 gives fk = pkαk

βk
χF , assumed no larger than 1 for both388

groups (else equation 45 is not relevant). In this case, ∆k is given solely by the parameters pk, αk, and βk; that is, it is389

independent of C and τ . Thus, the crime rate given by equation 40 under the equalizing false positive rate constraint390

given by 45 depends only on κ. For ease of reading, we define ψ(κ) to be the RHS of eq. 40 in this case. Then, since391

∆1,∆2 > 0, ψ(κ) monotonically decreases toward zero as κ increases and has a maximum at κ = 0,392

Cmax ≡ ψ(0) = N1

∫ ∞

0

Γ1(r) dr +N2

∫ ∞

0

Γ2(r) dr. (51)

Since ψ(κ) is continuous, if CF ∈ (0, Cmax], there must exist a unique κF such that ψ(κF ) = CF . In other words,393

(τF , CF ) also satisfies equation 40, so long as κ = κF .394

Corollary 4.3. Let τ, C, κ satisfy equations 40 and 45. C monotonically decreases as a function of κ.395

To somewhat reiterate the result of Theorem 4.2, for a given value of χF (even if it is not feasible), any desired396

crime rate CF ∈ (0, Cmax] can be made to result in fair outcomes across groups so long as τ is chosen to satisfy (45)397

and κ is chosen to satisfy (40), independently. Of course, whether this is realizable will depend on whether or not χF is398

feasible. Hence, as seen above in the single group case, if all the judge and legislator desire to do is make the crime399

rate as small as possible while still being fair, this can be accomplished to any desired level by simply choosing a high400

enough punishment level and the appropriate threshold. But, as discussed above, arbitrarily increasing punishment401

levels has the strong downside of leading to arbitrarily large levels of punishment applied to any false positives that402

might occur. Hence, as before, we will instead consider how the judge and the legislator can minimize the crime rate403

with some penalty proportional to the false positive rate of each group.404

4.2 Judge’s and Legislator’s Objective Function405

Similar to the one-group case, we propose the following two-group objective function:406

MB = C + λκn (N1(1− C1)FPR1 +N2(1− C2)FPR2) . (52)

Analytically describing the potential global minima of MB is more complicated than the one-group case, as terms407

containing the various Γ distributions cannot be eliminated during the algebraic manipulation as they can in the one408

group case. However, numerical explorations show in Figure 3 that this objective function can admit a minimum in the409
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interior of the parameter space in at least some scenarios, as seen for a single group. We choose the parameters, specified410

in the caption of Figure 3, to ensure that both groups are in the case where not all investigated individuals are assigned411

guilty as in Theorem 4.1. We chose equal population size and γ1, γ2 ∼ N (−2, 3) – the maximum crime rate is 0.25.412

We found that (τ, κ) = (0.32, 0.72) minimizes MB with value of 0.238; the crime rate is 0.24 and FPR1 = 0.045 and413

FPR2 = 0.042. In comparison, with the same parameters, and when κ = 0.72 is fixed, as in Theorem 4.1, the judge414

can minimize the crime rate even further to 0.7 with a lower threshold τ = 0.22, but with higher false positive rates for415

both groups: FPR1 = 0.076 and FPR2 = 0.085.

Figure 3: Contour plot of MB(κ, τ) with N1 = N2 = 0.5, λ = 1, n = 9, α1 = 0.5, α2 = 0.3, β1 = 0.3, β2 = 0.2,
p1 = 0.2, and p2 = 0.4. Here γ1, γ2 ∼ N (−2, 3). This figure shows a minimum value of 0.238 at (τ, κ) = (0.32, 0.72).
The green + indicates the location of (κ, τ) that minimizes the mixed objective case. The red + indicates the location of
(κ, τ) that minimizes the objective function with the parity of FPR constraint. The red and cyan dotted lines plot the
threshold τ that makes f1 = 1 and f2 = 1, respectively.

416

In the limiting case when p1 = p2 = p, the objective function is minimized by choosing χ exactly as in the417

one-group case:418

χ =
n− 1

p

n− 1
= χo (53)

as in 32. Similarly, the minimum is well defined and exists when n > 1
p and either pα1

β1
< 1 or n < α1−β1

α1p−β1
. The419

minimum then happens at (κc, χo) with κc satisfying420

−N1Γ1(κc∆1)f
1

1−p

1 β1

[
1

pχo
− 1

]
(1− λκncFPR1)−N2Γ2(κc∆2)f

1
1−p

2 β2

[
1

pχo
− 1

]
(1− λκncFPR2)

+ λnκn−1
c (N1(1− C1)FPR1 +N2(1− C2)FPR2) = 0.
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We will now explore two variants of the objective function, one motivated by an interesting result in the one group421

case, the other motivated by minimizing disparate impact. Recall that in the single group case, when n is large, the422

judge’s optimal threshold is equivalent to just minimizing the crime rate, i.e., choosing χ = 1. Based on this, we423

define the mixed objective case: the judge only cares about minimizing crime rate C, and therefore chooses χ = 1,424

while the legislator picks κ to minimize the resulting MB when χ = 1. Then one can easily show that MB has a425

minimum at some finite κM in the mixed objective case. This is because, for χ = 1, FPR1 = β1

(
p1α1

β1

) 1
1−p1 and426

FPR2 = β2

(
p2α2

β2

) 1
1−p2 , constants that do not depend on κ. Moreover, ∆1 and ∆2 are likewise constants. One can427

readily show in this case that dMB

dκ < 0 as κ→ 0 and dMB

dκ > 0 as κ→ ∞, indicating a global minimum at some κM .428

The objective function is similarly simplified in the case where the false positive rates of the two groups are429

equalized. We define MF to be the objective function MB with parity of false positive rates. We have,430

MF = C + λκn (1− C)FPRF , (54)

where FPR1 = FPR2 = FPRF , which is a constant. Exactly analogously to the mixed objective case, it is easily431

shown that this fair objective function has a global minimum for some finite value of κ.432

It is worth considering how enforcing the fairness constraint affects the optimal solution, and thereby impacts the433

individuals who are false positives of each group. Consider for now that the judge and legislator have some specific434

values of λ and n in mind for their objective function MB , and use them, in conjunction with all the other necessary435

parameters and distributions, to determine optimal values κB and τB , equivalently κB and χB . Then the total negative436

impact on each group k, in terms of erroneous punishment, is given by437

NB,k = κB(1− CB,k)FPRB,k . (55)

Now imagine an alternative scenario in which the same values of λ and n are chosen, but equality of false positives is438

enforced. The optimal parameters are then given by κF and χF , where χF is given in (45). The total negative impact439

on each group in this case is440

NF,k = κF (1− CF,k)FPRF . (56)

Then it is natural to ask whether implementing the fairness constraint has increased or decreased the harm to each441

group; i.e., what is the relationship between NB,k and NF,k for each group k?442

As a first point of consideration, note that if χB < χF , implementing the fairness constraint will cause the false443

positive rates of both groups to increase, with one increasing more than the other to make them equal. On the other444

hand, if χB > χF then implementing the fairness constraint causes both false positive rates to decrease. This of course445

does not paint a complete picture, as the behavior of κB and κF will greatly affect the negative impact. We therefore446

turn to numerical simulations to gain insight.447
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(a) (b)

(c) (d)

Figure 4: Exploring the impact of the fairness constraint. Panels (a) and (b) plot the difference in negative impact of
satisfying the unconstrained objective function and the fairness-constrained objective function – panels (c) and (d) plot
the difference between the justice system’s optimal choice. Here, N1 = N2 = 0.5, α1 = 0.5, α2 = 0.3, β1 = β2 = 0.1,
p1 = 0.2, p2 = 0.4 and γ1, γ2 ∼ N (−2, 3); these parameters give χF = 0.48.

We show in Figure 4 the results of a numerical study where, for fixed group parameters, we have computed NB,k448

and NF,k and created a contour plot of the difference between them for varying values of n and λ. Interestingly, for449

certain regions in this plot both groups benefit (in terms of negative impact) by the implementation of the fairness450

constraint. Conversely, in the remaining region both groups are harmed by implementing the fairness constraint. Based451

on this, it seems clear that a fairness constraint should only be considered for certain combinations of λ and n where452

both groups benefit from its implementation, and should certainly not be considered outside of these.453

On the other hand, if there is no a priori reason to choose any very specific values for λ and n, but a fairness454

constraint is desired, then Figure 4 also shows that there is a curve in parameter space along which the optimal solutions455

to the unconstrained case and the constrained case are identical. That is, if n and λ are chosen from that curve, then the456

fairness constraint is a natural side effect of the unconstrained optimization problem. Of course, whether or not such a457

curve will exist for other group-dependent parameter values is not necessarily guaranteed, and indeed in cases where458

χF is not feasible it cannot exist.459
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5 Discussions460

In this work we explored a model where rational agents choose whether or not to commit crime while the justice system461

attempts to influence this choice. In our model the justice system’s attempts are carried out by the judge setting a462

single society-wide guilt threshold influencing the likelihood of conviction and the legislator setting a society wide463

punishment level, both of which are applied after calculating the probability of guilt based on an individual’s signal and464

the crime rate. For the case of a single societal group, when the signals of the innocents and the criminals are more465

distinguishable than their respective policing rates, the judge is able to minimize the crime rate by choosing a threshold466

in which some people are not found guilty. In other words, the judge does not need to set the harshest threshold in order467

to minimize the crime rate. However, we showed that given this minimum crime rate, the legislator can further decrease468

the crime rate solely by increasing the level of punishment – the legislator will punish everyone as harshly as possible if469

minimizing crime is the only concern. To avoid such a scenario, we proposed that both the judge and the legislator470

minimize an objective function containing both the crime rate and a quantity proportional to the amount of punishment471

given to innocents. In doing so, we showed that, for a reasonable parameter space, the judge chooses a conviction472

threshold which still does not find everyone guilty and the legislator chooses a punishment level that is not the harshest473

and also not the most lenient.474

We then explored the case in which there are two distinct societal groups with different signal distributions and/or475

policing rates. The two-group case allows us to study a fairness notion of equalizing false positive rates across the476

two groups. We found that, under some group-dependent parameter combinations, achieving this notion of fairness is477

impossible. However, in other cases the judge and legislator can achieve this goal through careful choice of threshold478

and punishment level. We showed that, similar to the single group case, solely minimizing crime rate leads to draconian479

punishment by the legislators. We then proposed an objective function similar to the single group case and showed480

through a numerical simulation that for some parameter combinations, the judge chooses a conviction threshold which481

still does not find everyone guilty and the legislator chooses a punishment level that is not the harshest and also not the482

most lenient. Finally, we showed that imposing the fairness constraint within the optimization problem would generally483

lead to outcomes that either benefit or harm both groups depending on the choice of the objective function’s parameters,484

but that there exists parameter combinations where the constrained and unconstrained problem give the same optimal485

choices.486

Our model is a toy model with many simplifying assumptions. We assume that individuals here act fully rationally487

and have perfect information of the conviction threshold and punishment level to calculate their utility function. In488

reality, however, it is practically impossible for a criminal to calculate their expected utility from committing or489

not committing a crime; there are other decision making models that may be able to incorporate this uncertainty490

[22, 23, 24, 25]. In our model, we do not distinguish between the severity of crimes. It might be interesting to have491

an independent way for the severity of the crime to both influence an individual’s utility function and the punishment492

incurred if convicted. We considered the judge and legislator to be optimizing an objective function that includes493
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only the crime rate and a penalty term for false punishments. In reality there might be other factors the judge and494

legislator need to consider such as cost of conviction and cost of punishment, among others – as discussed in [1, 5].495

Lastly, our model shows how the likelihood of conviction and level of punishment deter crime. But there are other ways496

to approach the crime problem. For example, legislators can create laws to promote social welfare and create more497

options for individuals to get rewards from non-criminal activities, known in the literature as positive reinforcements498

– something that has been explored in the criminal deterrence literature [26, 27, 28, 12], although not as emphasized499

according to [5]. Incorporating these ideas could be an interesting potential future work.500
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