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Abstract8

Discovering connections and identifying key influencers from time series data when no prior9

network structure is known is an important and challenging problem in many applications, from10

crime to social media. Much attention has been paid to event-based time series (timestamp)11

data, in which the sequence of times of events is reported, but few methods consider count data12

in which discrete counts of events are given in a fixed time interval, which frequently occurs for13

real-world applications. Here, we lay the foundation to systematically develop methods covering14

a range of network inference problems for both sequential and batched count data involving dif-15

ferent scales and complexity. For small scale networks and batch-data, we develop an algorithm16

using an ensemble-based expectation maximization framework where the node dynamics and17

influence of connections are modelled by a general discrete-time Cox or Hawkes process. The18

second method is a batch-data algorithm designed for linear multidimensional Hawkes model19

of the node dynamics based on a minimization majorization approach, leading to an iterative20

method that solves the maximum likelihood problem that can be parallelised at each iteration21

to enable the inference of large-scale network structure. The third method is a sequential data22

assimilation method that is based on a second-order approximation of the Bayesian inference23

problem that, under certain assumptions, a rank-1 update for the covariance matrix can be24

employed to reduce the computational cost; the method is also parallelizable, allowing appli-25

cability to large-scale problems. The methods are tested on synthetic data constructed from a26

multidimensional Cox, a Hawkes-Poisson process, an agent-based model of urban crime and on27

real-world email communications between European academic communities. We demonstrate28

the robustness of the methods to construct the underlying network where influencing is driven29

not only by excitation but also diffusion. This work opens the field to develop new methods for30

network reconstruction from count data for real-world problems.31

1 Introduction32

This work is motivated by conventional applications of continuous-time Hawkes processes utilized33

to model the temporal clustering as well as mutual excitation network driven by the timestamp34

data, i.e. the times of events. The continuous-time point-process Hawkes model was first introduced35

by Hawkes [18] to capture a self-excitation process, used particularly for seismic events [30]. Since36

then, it has been extended to multivariate Hawkes process to model the mutual excitation structure37

or influence network structure. This development has led to emerging applications of point-process38

Hawkes model to seismic analysis [38, 30], urban crime analysis [28, 27, 34, 42] social network39

analysis [25, 45, 43, 6, 22, 5, 17, 46], financial time-series analysis [3, 4, 12, 19], contagious disease40

network [36, 7] and deep learning network [32, 37, 39, 40, 47].41

To reconstruct the influence network from a time-series of timestamp data, most of the above42

work typically used the Expectation-Maximization (EM) or Minimization-Majorization (MM) frame-43

work to construct a surrogate function (i.e., tight-upper bound function) for the negative log-44

likelihood function. The main advantage of this approach is that it may help to decouple the45
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parameter space when optimizing the surrogate function, speeding up the computational task. For46

a simple excitation kernel such as the exponential decay kernel, a closed-form method for the pa-47

rameter update can be derived. A non-parametric excitation kernel can also be used within the EM48

and MM approach, where the Euler-Lagrange equation can be derived for the optimization of the49

surrogate function [24] and the regularization to promote sparsity [44]. Other techniques have also50

been developed to estimate non-parametric kernels; see for instance [3, 23, 10]. A fully-Bayesian,51

parallel inference algorithm was also developed in [26] to model the excitation structure by random52

graph models which allows conjugate prior for efficient inference via Markov chain Monte Carlo.53

The influence network within multi-dimensional Hawkes models can also be linked to Granger-54

causality in temporal point processes [16]. In the context of this framework, an event generated55

by xj is considered to “Granger-cause” the event associated with xi if the likelihood function of56

events in xi(t), given the history of all events up to time t, decreases when the history of events57

generated by xj is omitted. The application of the multivariate Hawkes model in the context58

of Granger causality provides interpretability of the results. It was demonstrated in [10] that xj59

does not Granger-cause xi when the (pairwise) excitation kernel used by xj to ’excite’ xi is zero.60

Applications of Hawkes model to discover Granger-causality were investigated with real-world data61

in [41, 1, 20]. However, this work is limited to certain conditional independence of the excitation62

process, while some data may exhibit inhibition or interaction. Additionally, to the best of our63

knowledge, the connection between the excitation (or influence) network and Granger causality64

has not been extended to the case of count data modeled by the discrete-time Hawkes process.65

Therefore, the influence network derived from count data may or may not correspond to the causal66

network.67

Similar to the timestamp data, a time series of count data may exhibit self-excitation, wherein68

a high count is often followed by several higher counts, e.g., in a time series of epileptic seizure69

counts [2]. This data is often easier to collect and more common in applications, for instance in70

epidemiology, where one can only sensibly collate count data. Moreover, multiple time series may71

demonstrate an “influencing” characteristic, where a high count from one series is followed by high72

counts in others. For instance, a cluster of earthquakes in a particular region could trigger seismic73

activities in adjacent regions, while incidents occurring in one area of a city could lead to similar74

occurrences in other areas, e.g., urban crimes [34, 33]. We can conceptualize the sources of these75

multiple time series as nodes in a network, and by uncovering the influence structure of such a76

network, we can gain insights into the evolving dynamics of the network over time, such as the77

emergence of synchronisation of node dynamics. However, there are no methods (to the best of the78

author’s knowledge) for carrying out the network reconstruction problem from time series count79

data.80

The primary aim of this work is to identify an influence network from a time series consisting81

of count data that opens up more real-world applications of network reconstruction via Hawkes-82

type processes. The count data inference problem is significantly more challenging since data is83

aggregated and therefore there is a loss of information relative to the time-stamp data which needs84

to be accounted for in the inference problem. We utilize a discrete-time, multidimensional Cox or85

Hawkes process to model the excitation effects among nodes driven by count data. Within this86

framework, the magnitude of the influence can be quantified by the excitation rate parameters87

incorporated into the model. Therefore, the task of identifying the influence network reduces88

to estimating the parameters of the Cox or Hawkes model. This work presents three distinct89

methodologies for parameter estimation for count data problems: (1) Ensemble-based EM, (2)90

Minimization-Majorization (MM) technique and (3) a sequential algorithm based on approximate91

second-order filtering.92

For the ensemble-based EM, the Hawkes process can take a general “state-space” form (e.g.,93

doubly stochastic Poisson point process) that consists of state dynamical system and observation94

equation. Within the context of EM, the “missing” data is the unobserved sample path of the95

state. Therefore, the E-step requires a Monte Carlo sampling of the sample paths. This approach96

was previously used in the context of the model identification for the Kalman filter [35, 14]. We97

demonstrate how this idea can be applied to network reconstruction of a small network.98
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The MM algorithm is developed for batch data inference aimed at large-scale network problems.99

For this algorithm, we limit the node dynamic model to a discrete-time dynamical system analogous100

to the exponential-decay kernel of the multivariate Hawkes process. We show how one can derive an101

iterative method that minimises a surrogate function such that the surrogate function is a “tight”102

upper bound of the negative log-likelihood function for count data. We show how the iterative103

method can be parallelised for large-scale problems.104

The sequential algorithm based on approximate second-order filtering, called the extended105

Poisson-Kalman filter (ExPKF), is derived by approximating the mean and covariance matrix106

of the posterior density for the same dynamical systems Hawkes model used for the MM algorithm.107

We show how this leads to an efficient method under an assumption, where one can use a rank-1 up-108

date for the update of the covariance matrix and with parallelisation the method is then applicable109

for large-scale network problems.110

Our main contributions are the development of the foundations for a systematic approach to111

dealing with network influence reconstruction from count data. We present methods that deal with112

either complex state-space models for small networks or linear Hawkes processes for large networks.113

The ensemble-based EM method also captures uncertainty quantification of the intensity estimate,114

while ExPKF provides a second-order moment for the network estimate. Uncertainty quantification115

is very important in network reconstruction applications so that one can gain an understanding of116

the uncertainty of a link between two nodes occurring. This work opens up new avenues of research117

involving count data collected on networks, and the development of new methods for more general118

or other types of stochastic processes.119

The paper is outlined as follows. In Section 2, we develop the ensemble-based EM algorithm120

for small networks. We then focus on a large-scale network for a count-data model, inspired by121

the discretization of the exponential decay kernel of the continuous-time Hawkes process. The MM122

algorithm is developed for batch data inference in Section 3 and the extended Poisson-Kalman filter123

(ExPKF) is derived in Section 4. In section 5, we demonstrate the validity of the proposed methods124

to reconstruct the influence network with various numerical experiments with known ground truths.125

We also demonstrate the utility of the method on large real-world email network data in section 6126

and conclude in section 7.127

2 Ensemble-based EM128

We are interested in an inhomogeneous Poisson point process on a network with m nodes, where129

the conditional intensity λik at the i-th node is assumed to be a constant in the k−th time interval130

(tk, tk+1). In other words, if ∆N i
k is the number of events observed for the i−th node at the131

k−th time interval, we assume that Pr(∆N i
k | λik) is a Poisson probability with mean λikδtk where132

δtk = tk+1−tk. The intensity λik depends on a n-dimensional parameter vector, θi := [θi,1, . . . , θi,n]ᵀ.133

We concatenate all vectors θi to form a parameter vector θ, i.e., θ := [θ1; · · · ; θm].134

Without loss of generality, all the time intervals are assumed to have the same length δt. At135

any given time step k, we assume conditional independence so that the conditional joint density is136

given by137

p(∆N1
k , . . . ,∆N

m
k︸ ︷︷ ︸

≡∆Nk

|λ1
k, · · · , λmk ) ∝

m∏
i=1

(λik)
∆N i

k exp(−λikδt). (2.1)

Let ∆N1:K := [∆N1, . . . ,∆NK ] denote time-series of count data up to the time step K for all nodes.138

The log-likelihood function is then given by139

L(θ) := log p(∆N1:K | θ) =
m∑
i=1

K∑
k=1

log(λik(θ
i))∆Nk − δt

m∑
i=1

K∑
k=1

λik(θ
i) + C, (2.2)

where C is independent of θ. The maximum likelihood method estimates the model parameter140

vector θ (in a parameter space Θ) by maximizing the log-likelihood function141

θ̂ := arg max
θ∈Θ

L(θ). (2.3)
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We assume that the discrete-time dynamic of λik is governed by a stochastic process of an142

unobserved “state” vector denoted by xk :=
[
x1
k, . . . ,x

m
k

]
with xik ∈ Rd:143

xk = Ψ(xk−1;p) + ηk, (2.4)

where a function Ψ can be nonlinear, p is a fixed parameter vector and ηk ∼ N(0,Q). The144

conditional intensity, λik, is assumed to be a function of the state vector, i.e.,145

λik = h(xik;q), (2.5)

where the link function of observation, h, is usually nonlinear and q is a fixed parameter vector.146

In this setting, the parameter vector is given by the augmented vector θ = [p q]. The so-called147

complete data likelihood function is the joint probability density p(x0:K ,∆N1:K | θ), where x0:k148

denotes the sequence of x0 up to xk. The (marginal) likelihood function in (2.2) can be expressed149

by150

θ̂ := arg max
θ∈Θ

log

∫
p (x0:K ,∆N1:K | θ) dx0:K . (2.6)

We adopt the EM framework to construct an iterative algorithm for the state-space model to151

avoid a direct integration of the above joint density. The construction of our algorithm follows a152

similar approach for model identification for the Kalman filter presented in [35, 14]. To this end, we153

denote the parameter estimate after κ iterations by θ(κ). In the EM approach, we have to design a154

tight lower-bound function (i.e. minorization) that would be more tractable for maximization than155

the original marginal likelihood function. For the current case, a tight lower-bound (or surrogate)156

function for maximization is given by157

Q
(
θ; θ(κ)

)
=

∫
p
(
x0:K | ∆N1:K , θ

(κ)
)

log p (x0:K ,∆N1:K | θ) dx0:K

= E [log p (x0:K ,∆N1:K | θ)] .
(2.7)

which represents the E-step of the EM algorithm. The M-step then solves the maximization problem158

θ(κ+1) := arg max
θ∈Θ

Q
(
θ; θ(κ)

)
. (2.8)

Under the (first-order) Markovian assumption, we can decompose the surrogate function Q
(
θ, θ(κ)

)
159

by160

Q
(
θ, θ(κ)

)
= Q0

(
θ, θ(κ)

)
+Qx

(
θ, θ(κ)

)
+Q∆N

(
θ, θ(κ)

)
,

Q0

(
θ, θ(κ)

)
=

∫
p
(
x0 | ∆N1:K , θ

(κ)
)

log p (x0 | θ) dx0,

= E [log p (x0 | θ)] ,

Qx

(
θ, θ(κ)

)
=

K∑
k=1

∫
p
(
xk,xk−1 | ∆N1:K , θ

(κ)
)

log p (xk | xk−1,∆N1:K , θ) dxkdxk−1,

=

K∑
k=1

E [log p (xk | xk−1,∆N1:K , θ)] ,

Q∆N

(
θ, θ(κ)

)
=

K∑
k=1

∫
p
(
xk | ∆N1:K , θ

(κ)
)

log p (∆Nk | xk, θ) dxk,

=

K∑
k=1

E [log p (∆Nk | xk, θ)] .

(2.9)

To maximize Q, we must assume the availability of p (x0 | θ), p (xk | xk−1,∆N1:K , θ), and161

p (∆Nk | xk, θ). The initial density p (x0 | θ) may depend on the model parameter in general,162
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depending on how we would like to generate the initial density for the state. If not, Q0 can be163

excluded from the maximization. The transition density p (xk | xk−1,∆N1:K , θ) will depend on the164

model (2.4). Assuming a normal distribution for ηk in (2.4), p (xk | xk−1,∆N1:K , θ) is also normal.165

The likelihood function p (∆Nk | xk, θ) then follows the assumption in (2.1).166

The expression in (2.7) suggests that if we can sample from p
(
x0:K | ∆N1:K , θ

(κ)
)
, we can then167

estimate all the expectations in (2.9) using the sample paths, which we denote by xs0:K . The168

superscript s stands for “smoothing” which will be explained below. The efficiency of the EM169

algorithm in this setting will depend strongly on the design of the path sampling technique. We170

will use the forward filtering-backward sampling procedure to obtain samples approximately from171

the joint smoothing distribution [14], which is a combination of particle filtering (PF) and backward172

simulation smoother (BSS) to generate xs0:K .173

Particle filtering is a sequential Monte Carlo (SMC) technique for non-linear filtering. In the174

current application, it can be used to sample p
(
xk | ∆N1:k, θ

(κ)
)
, i.e., only the observation up to the175

time step k is used to estimate xk. It enjoys great flexibility but suffers from filtering degeneracy,176

where most of the sample weights become zero as time increases. A resampling is required to177

mitigate this issue. We will still, however, employ it in our work for a low-dimensional problem. A178

brief discussion of PF algorithm is provided in Appendix A. An extensive review of SMC and PF179

can be found in many review literature, to name a few here, [15, 8, 9, 21].180

Suppose that we have obtained the weighted, filtered particle
(
x
f(`)
k ,w

f(`)
k

)
for i = 1, . . . , Nf ,181

where Nf is the number of particles used in PF. The particles approximate p
(
xk | ∆N1:k, θ

(κ)
)

but182

the EM algorithm requires p
(
xk | ∆N1:K , θ

(κ)
)

for any k = 1, . . . ,K. The BSS uses the filtered183

particles
(
x
f(`)
k ,w

f(`)
k

)
to generate the smoothing particles,

(
x
s(`)
k ,w

s(`)
k

)
for j = 1, . . . , Ns, where184

Ns and Nf can be different. The algorithm for BSS is also provided in Appendix A. We can then185

approximate the expectations in (2.9) based on
(
x
s(`)
k ,w

s(`)
k

)
. Maximization of Q in (2.9) to find186

θ(κ+1) is then carried out numerically. We use the function fmincon in MATLAB to optimize Q. A187

useful by-product of this approach is that the ensemble of sample paths of the conditional intensity188

λi1:K can be directly computed from the particles
(
x
s(`)
k ,w

s(`)
k

)
at the last iteration of the EM189

algorithm. The ensemble-based EM method allows for uncertainty quantification of the intensity190

paths. In the subsequent subsections, we will demonstrate how the ensemble-based EM may be191

used for some discrete-time Hawkes model that can be represented in a state-space form.192

2.1 Log-Gaussian Cox process (LGCP)193

We consider a univariate LGCP (i.e. m = 1) given by194

xk = (1− ω1δt)xk−1 + ω1µδt︸ ︷︷ ︸
:=Ψx(xk−1)

+ε
√
δtηk,

gk = (1− ω2δt)gk−1 + α∆Nk−1︸ ︷︷ ︸
:=Ψg(gk−1)

,

λk = exp(xk) + gk.

(2.10)

We assume ηk has the standard normal distributionN(0, 1). The parameter vector is θ = [µ, ω1, ε, α, ω2]195

and the state variable is xk ∈ R.196

We first consider a synthetic experiment with a ground truth θ∗ = [1.5, 0.5, 2.5, 0.5, 1.5] and197

simulate ∆N1:K and λ1:K for K = 4000 with δt = 0.1 and initial condition x0 = 1.5 and g0 = 0.198

We initialize the EM algorithm with parameter vector θ(0) = [3, 0.25, 1.25, 0.25, 0.75]. At the κ−th199

iteration, the E-step requires a prior sample of the state vector x0. We use a prior assumption200

x0 ∼ N(µ(κ), ε(κ)δt) and set g0 = 0. The number of particles is Nf = 400 and we set Ns = 0.25Nf201

in our experiment. After obtaining the smoothing particle xs(κ) from E-step (using a combination202

of PF and BSS as explained in Appendix A), we can evaluate the Q−function in (2.9). The203

Q−function (after omitting the terms irrelevant to maximization) has the following form:204
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Q0(θ, θ(κ)) = − 1

2Ns

Ns∑
`=1

(
x
s(`)
0 − µ(κ)

)2

δt

Qx(θ, θ(κ)) = − 1

2Ns

Ns∑
`=1

 K∑
k=1

(
x
s(`)
k −Ψx

(
x
s(`)
k−1

))2

ε2δt
+K log ε


Q∆N (θ, θ(κ)) =

1

2Ns

Ns∑
`=1

[
K∑
k=1

∆Nk log λk − exp(λk)δt

]
(2.11)

When K is large, the term Q0(θ, θ(κ)) in (2.9) can be neglected. Furthermore, Qx depends on only205

µ, ω1, ε and Q∆N depends only on α, ω2. We can then solve the two maximization problems in206

parallel to obtain θ(κ+1). Maximizing Qx has a closed-form solution, see Appendix B, and can be207

readily computed. However, since Qx and Q∆N are maximized in parallel, numerically maximizing208

Q∆N becomes a bottleneck to the speed of the algorithm. For this experiment, we numerically209

maximize both Qx and Q∆N using fmincon in MATLAB. The constraint optimization is required to210

ensure the positive values of parameters.211

The results are shown in Figure 1. We also compare the filtered intensity λ
f(`)
0:k with the smoothed
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Figure 1: (Top) Comparison between filtered particles x
f(`)
0:k , smoothed particles x

s(`)
0:k and ground truth. The

simulated data is also shown in the bar plot. (Bottom, left) The progress of the relative error of the parameter
vector θ over 15 EM iterations. (Bottom, right) The propagation of the relative error for the conditional
intensity.

212

intensity λ
s(`)
0:k in Figure 1, which are computed from x

f(`)
0:k , x

s(`)
0:k using the observation equation in213

(2.10), respectively. Figure 1 clearly shows that the smoothed particles have smaller variation (or214

uncertainty) than that of the filtered particles. The relative error for the parameter vector decays215

quickly after a few steps and then becomes stable. We compute the relative error for each particle216

λ
s(`)
0:k and report the average relative error in Figure 1.217
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2.2 Logistic LGCP218

We modify the conditional intensity function in (2.10) to219

λk = h (exp(xk) + gk)) ; h(z) =
A

1 +B exp(−z)
. (2.12)

This modification incorporates the upper bound λk ≤ A to the conditional intensity. The parameter220

vector is θ = [µ, ω1, ε, α, ω2, A,B] and the state vector is xk ∈ R. The required Q−function is the221

same as (2.11).222

We select a ground truth θ∗ = [0.5, 0.5, 0.25, 9, 0.5, 12, 4] and simulate ∆1:K and λ1:K for K =223

2000 with δt = 0.1 and initial condition x0 = 1 and g0 = 0. We initialize the EM algorithm with224

parameter vector θ(0) = [1, 0.25, 0.5, 4.5, 1, 24, 8]. As shown in Figure 2, a fast reduction of both225

relative errors is obtained at the beginning and then becomes stable.

0 5 10 15 20 25 30 35
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Figure 2: (Top) Comparison between filtered particles x
f(`)
0:k , smoothed particles x

s(`)
0:k and ground truth for the

Logistic LGCP. The simulated data is also shown in the bar plot. (Bottom, left) The progress of the relative
error of the parameter vector θ over 35 EM iterations. (Bottom, right) The progress of the relative error for
the conditional intensity.

226

2.3 Log-Gaussian Cox process (LGCP) on a small network227

We consider a multivariate extension of LGCP on a network where the links of the network describe228

an “influence” structure through a (pairwise) excitation process. We demonstrate the utility of the229

ensemble EM approach for the multivariate LGCP on the m nodes, denoted by xj for j = 1, . . . ,m,230

that has the following form:231

xik+1 =

(1− ηi)xik + ηi
∑
j 6=i

xj

 (1− ωi1δt) + ωi1µ
jδt

︸ ︷︷ ︸
:=Ψi

x(xik)

+εi
√
δtζk,

gik+1 = (1− ωi2δt)gik +
m∑
j=1

αij∆N j
k ,

λik+1 = exp(xik+1) + gik+1,

(2.13)
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where ηj is the diffusion coefficient strength at each node, ωj1 and ωj2 are the decay rates at each232

node, αji are the excitation coupling parameters, εj > 0 and ζk ∼ N (0, 1) describes the noise at each233

node. The Q−function is defined similarly to (2.11). A (homogeneous) diffusion effect is included234

in the dynamics of xjk and the event-driven excitation process between nodes is incorporated in the235

dynamic of gjk. The mutual excitation of gjk is driven not only by the count data from the node236

j itself, but also by all other nodes. Both diffusion and excitation contribute to the increment of237

the conditional intensity of other nodes in the network in the next time step. The state variable is238

the vector xk =
[
x1
k, . . . , x

m
k

]
∈ Rm. Note that if there is no diffusion term, we could compute the239

smoothed path of each xjk in parallel for the E-step.240

We consider an experiment with the following parameters: δt = 0.1, ωj1 = 0.5/δt, ωj2 =241

0.9/δt, ηj = 0.1, µj = 0.5, εj = 0.125 and m = 3. The ground truth of the mutual excitation242

structure αij is given in Figure 5. We test the experiment with different simulated data lengths243

K = 500, 1000, 2000. The initial ensemble for xj0 is drawn independently from N(0, 5εj) using244

N = 600 particles. The initial structure of the network is set to αij = 0.9, i.e., a fully connected245

network with a uniform excitation rate of 0.9. The experimental results are shown in Figures 3246

to 5. The errors of the parameter estimation for various values of K are shown in Figure 3, all of247

which exhibit fast error reduction in the first step and then slowly decrease afterwards, similar to248

the univariate case shown in §2.1. The smoothed path at the final EM step is shown in Figure 4249

for K = 2000, which demonstrates a good estimate of the true intensity. The results for the other250

data lengths are similar. Most importantly, the network structure, which is the main interest of251

this work, can be accurately captured as shown in Figure 5 if the data length is sufficiently long252

enough. Note that we have tested several cases and found similar results when the initial guess of253

the parameters is “close enough” to the true parameters in a sense that the stability of the model254

is sustained; if the initial parameter is not “close enough” to the true values, the method may fail255

to converge.256
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0.135
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1:K
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Figure 3: (Left) Relative error of the parameter vector at each EM-step.(Right) Relative error of the condi-
tional intensity at each EM-step

3 Majorization-Minimization (MM)257

In this section, we consider a large-scale network problem and focus only on the discrete-time model258

analogous to the exponential-decay kernel of the multivariate Hawkes process. In particular, the259

conditional intensity λjk is given by260

λik+1 = µi + (λik − µi)γi +
m∑
j=1

αij∆N j
k , i = 1, . . . ,m, (3.1)
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Figure 4: From the top to bottom, the plot shows the smoothed path at the final step of the EM for node 1 to
3, respectively. For a clear visualisation, only part of the trajectory is shown at the time step k = 100− 500.
The bar plot beneath the intensity shows the simulated count data for each node.
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Figure 5: Estimated values of αij for various data length and the ground truth. The i−th row and j− column
in the plot indicates αij.

where µi > 0, αij ≥ 0 and 0 < γi < 1. The parameter µi represents the baseline rate where the261

number of events are endogenously generated based on a Poisson distribution with the mean µi.262

We assume that the initial condition is the same as the baseline, i.e., λi0 = µi. The parameter αij263

for i 6= j models increases in the likelihood to generate more counts for the i-th node immediately264

after observing counts for the j-th node. The parameter γi is the decay rate of λik toward the265

baseline rate. The recursive model (3.1) can also be rewritten in a closed form by266

λik = µi +

k∑
`=1

Bi
`

(
γi
)k−`

& Bi
` :=

m∑
j=1

αij∆N i
`−1. (3.2)

This section provides an iterative procedure to minimise the negative log-likelihood function267

of the discrete-time Hawkes process. In the continuous-time setting, where the timestamp data268

is available, the branching process can be (artificially) assumed to define the missing data (i.e.269

immigrant, ancestor or descendent) and the complete likelihood function. However, it is difficult270

to replicate this idea in the count data setting. Instead, we employ the MM technique to derive an271

EM-like algorithm for the multivariate Hawkes model driven by count data.272

We first present a derivation of the MM algorithm for the case that the decay rate γi = γ273

is fixed. Due to the conditional independence of λik for all i = 1, . . . ,m and k = 1, . . . ,K given274

the parameters, we can separately minimise the negative log-likelihood function of each node to275

9



estimate µi and αij . For this reason, when estimating parameters for the i-th node, we will avoid276

the notation clutter by omitting the superscript i from the subsequent discussion in this section,277

e.g., αij will be written by αj without confusion. The negative log-likelihood for a given node is278

L(θ) := −
K∑
k=1

log(λk)∆Nk + δt
K∑
k=1

λk + C, (3.3)

where θ = (µ, α1 . . . , αm) and C is a constant. The MM algorithm is an iterative technique that279

updates the estimation of θ(n+1) at the n+1 iteration by minimising a surrogate function Q(θ | θ(n)).280

For the minimisation problem, the surrogate function is chosen to be a “tight” upper bound function281

so that Q(θ | θ(n)) ≥ L(θ) for any θ and Q(θ(n) | θ(n)) = L(θ(n)). Without loss of generality, we282

may assume δt = 1 here and ignore the constant C as well.283

By applying Jensen’s inequality, a tight upper bound function of − log(λk(θ)) in (3.3), denoted284

by Qk(θ | θ(n)), can be constructed by285

− log(λk) ≤ Qk(θ | θ(n)) := −µ
(n)

λ
(n)
k

log

(
λ

(n)
k

µ(n)
µ

)
−
k−1∑
l=0

m∑
j=1

φ
(n)
klj

λ
(n)
k

log

φ(n)
klj

λ
(n)
k

φklj

 , (3.4)

where φklj := αj(γj)k−l−1∆N j
k . Clearly, we have Qk(θ

(n) | θ(n)) = − log(λk(θ
(n))). We now define286

a tight upper bound function of L(θ) by287

Q(θ | θ(n)) = −
K∑
k=1

Qk(θ | θ(n))∆Nk +
K∑
k=1

λk. (3.5)

We obtain the update equations by setting the derivative of Q to zero to yield288

µ(n+1) =
1

K

K∑
k=1

µ(n)

λ
(n)
k

∆Nk,

(
αj
)(n+1)

=

K∑
k=1

k−1∑
l=0

φ
(n)
klj

λ
(n)
k

∆Nk

(1 + γ)N j + ∆N j
N−1

,

(3.6)

where N j = ∆N j
1 + . . .+ ∆N j

K−2. Note that we make a second-order approximation of small γn so289

that γn ≈ 0 for n ≥ 2 in order to obtain the update equation of
(
αj
)(n+1)

. Notice that the update290

equations for each parameter are decoupled, so this step can be computed in parallel.291

In general, we can also derive MM algorithm that allows the decay rate to be dependent292

for every node pair. In other words, the parameter vector for the i-th node is given by θ =293 (
µi, αi1, . . . , αim, γi1, . . . , γim

)
. Again, we will omit the superscript i in the algorithm below because294

of independence of parameters between nodes. Hence, we will write θ =
(
µ, α1, . . . , αm, γ1, . . . , γm

)
.295

To obtain independent update equations for each parameter (similarly to (3.6)), further work is296

required to deal with the second term in (3.6). Through the Arithmetic-Geometric inequality, the297

upper bound function can be obtained by298

Q(θ | θ(n)) = −
K∑
k=0

Qk(θ | θ(n))∆Nk +Nµ+

m∑
j=1

HjN j , (3.7)

where299

Hj =

(
αj
)(n)

2
(

1 + (γj)(n)
)(1 + γj)2 +

2
(

1 +
(
γj
)(n)
)

(αj)(n)
(αj)2. (3.8)
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Note that we use a second-order approximation of small γj to obtain the upper bound function300

(3.7). By setting the derivative of Q in (3.7) to zero, we obtain the following update equations301

µ(n+1) =
1

K

K∑
k=1

µ(n)

λ
(n)
k

∆Nk,

(
αj
)(n+1)

= −Bj +

√
(Bj)2 + 4AjCj

2Aj
,

(
γj
)(n+1)

= −Dj +

√
(Dj)2 + 4DjEj

2Dj
,

(3.9)

where302

Aj = N j 1 + (γj)(n)

(αj)(n)
,

Bj = ∆N j
K−1,

Cj =

N∑
k=1

k−1∑
l=0

∆Nkφ
(n)
klj

λ
(n)
k

,

Dj = N j (αj)(n)

1 + (γj)(n)
,

Ej =
K∑
k=1

k−1∑
l=0

(k − l − 1)
∆Nkφ

(n)
klj

λ
(n)
k

.

(3.10)

In practice, a regularisation scheme may be required to obtain useful results. For the system303

with known decay rate, we apply a regularisation only to the baseline rate update in (3.6) and keep304

the update equation of the excitation network unchanged. One of the simplest ways to do this is305

to change (3.6) to306

µ(n+1) =
1

N + b

(
K∑
k=1

µ(n)

λ
(n)
k

∆Nk + a− 1

)
, (3.11)

for some hyperparameters a, b > 0. This is equivalent to solving the Maximum a posterior (MAP)307

problem with a gamma prior distribution of µ with hyperparameters a and b. We will discuss how308

we choose a and b in the synthetic experiment in the subsequent section.309

Similarly, we may regularise the update equations for µ and γj in (3.9) by applying a gamma310

prior distribution for µ with the standard shape parameter a and inverse scale parameter b and311

a beta prior distribution for each γi with hyperparameters c and d. Note that for simplicity, we312

assume the prior distribution of all parameters to be independent and use the same value of the313

hyperparameters for all γj . The beta distribution is selected to constrain γj within the desired314

interval (0, 1). The update equation for µ(n+1) under this regularisation will be the same as (3.11).315

However, to update γj , we must solve a quartic polynomial of the following form316

−Djx4 + (Dj + Ej)x2 + (c− d− Ej)x− a = 0, (3.12)

where x denotes
(
γj
)(n+1)

and Ej and Dj are defined in (3.10). We can either try to solve (3.12)317

analytically or numerically. In our work, we solve this numerically at every iteration.318

4 Discrete-time Hawkes model and filtering319

The MM algorithm in the previous section is designed to estimate the model parameters in batch.320

Alternatively, we can also develop a sequential procedure to estimate the parameters. This section321

presents a sequential (second-order) approximation of the posterior density p(θk | ∆N1:k). In322

particular, we are interested in approximating only the mean and covariance matrix associated323

with p(θk | ∆N1:k). Suppose that we have obtained the approximation of the mean and covariance324
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matrix at the time step k − 1 denoted θ̄k−1 and Pk−1, respectively. Based on this approximation,325

we assume a prediction model to generate a prior mean, denoted by θ̄k|k−1, and prior covariance,326

denoted by Pk|k−1. Following the derivation in [31], a second-order approximation of p(θk | ∆N1:k)327

(called the Extended Poisson-Kalman Filter (ExPKF)) has the following mean θ̄k and covariance328

update Pk given by329

P−1
k = P−1

k|k−1 +
m∑
i=1

[(
∂ log λik
∂θk

)(
∂ log λik
∂θk

)ᵀ

λikδt− (∆N i
k − λikδt)

∂2 log λik
∂2θk

]
,

θ̄k = θ̄k|k−1 + Pk

m∑
i=1

[(
∂ log λik
∂θk

)
(∆N i

k − λikδt)
]
,

(4.1)

where the gradient vector
∂ log λik
∂θk

and Hessian matrix
∂2 log λik
∂2θk

are both evaluated at θ̄k|k−1.330

The filtering equation (4.1) can be used to sequentially approximate the parameters of the331

model (3.1). We will assume that γi is fixed for a reason that will be explained later; hence there332

are m + 1 unknown parameters for each λik. To ensure the positivity of the parameters, we will333

estimate the log-transformed parameter instead,334

θik := [logµik, logαi1k . . . , logαimk ]ᵀ. (4.2)

Therefore, we have θk ∈ Rm(m+1). If θk is meant to be a static parameter vector, it is reasonable335

to assume the following random-walk model,336

θk = θk−1 + ηk, (4.3)

where ηk ∼ N(0,Qk). Thus, we have θ̄k|k−1 = θ̄k−1 and Pk|k−1 = Pk−1 + Qk. Let Sik = ∆N i
k +337

γi∆N i
k−1 + · · ·+ (γi)k−1∆N i

0, which can be recursively computed by Sik+1 = γiSik + ∆N i
k+1. It can338

be checked that the gradient vector required by (4.1) has the following form339

∂ log λik
∂θk

=

[
∂ log λik
∂θ1

k

,
∂ log λik
∂θ2

k

, . . . ,
∂ log λik
∂θmk

]ᵀ
, (4.4)

where340

∂ log λik
∂θik

=

{
1
λik

[
eµ

i
k , S1

ke
αj1
k , . . . , Smk e

αjm
k

]
, if i = j,

0, if i 6= j.
(4.5)

Thus, only the i−th “block” of
∂ log λik
∂θk

is non-zero. Recall, that γi is fixed. It follows that the341

Hessian has a simple form, given by342 (
∂ log λik
∂θk

)(
∂ log λik
∂θk

)ᵀ

= −
∂2 log λik
∂2θk

+ Λ(i), (4.6)

where Λ(i) is a diagonal matrix with the diagonal vector
∂ log λik
∂θk

. Substituting the above results343

into (4.1) yields344

P−1
k = P−1

k|k−1 +

m∑
i=1

∆N i
k

(
∂ log λik
∂θk

)(
∂ log λik
∂θk

)ᵀ

+
(
λikδt−∆N i

k

)
Λ(j). (4.7)

With the form in (4.7), a rank-1 update can be efficiently used to compute P−1
k . Also, if Pk|k−1 has345

a block-diagonal form where each block corresponds to the parameters of each node, P−1
k will also346

have the same block-diagonal structure where the i−th block corresponds to the parameters of the347

i-th node. Therefore, by ensuring that Pk|k−1 has the same block-diagonal structure, Pk will inherit348

the same block-diagonal structure. Consequently, the update system (4.1) can be implemented for349

each node in parallel, which enhances the feasibility of the proposed algorithm for a large-scale350

problem. To this end, we will always enforce the block-diagonal structure to P0 and Qk in all of351

our numerical experiments.352
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5 Synthetic data tests353

5.1 Test Experiment 1354

We set up this experiment to generate synthetic test data for three different scenarios based on355

(3.1). The true network has m = 9 nodes with the following baseline rates: µ1 = 5, µ2 = 4.6, µ3 =356

4.2, µ4 = 0.5, µ5 = 0.46, µ6 = 0.42, µ7 = 0.38, µ8 = 0.34, and µ9 = 0.3.357

We assume γi := γ = 0.175 for all nodes. Note that the model (3.1) is stable if the magnitude of358

the largest eigenvalue of δt(1−γ)−1A is less than 1, where A is a matrix with αij entries on the i−th359

row and j−th column. The value of γ = 0.175 is selected so that the model (3.1) is stable for all three360

different ground truths of the excitation matrix, A, examined in this experiment. The structures of361

three different ground truths are shown in Figure 7 representing the different scenarios: only self-362

excitation (top row), localised excitation (middle row), and random excitation structure (bottom363

row). We generate the test data with δt = 1 for various data lengths, K = 2000, 4000, 8000, 20000.364

A test data is simulated by running the model (3.1) and sampling ∆N i
k from a Poisson distribution365

with the mean rate λikδt with the initial condition λi0 = µi.366

The results for MM method with and without regularisation are shown in Figures 6 and 7,367

respectively. For any i−th node, the hyperparameter for the regularised MM algorithm is set to368

a = 0.5N iK, where N i is the average count of the i−th node over K time steps and b = K.369

This is equivalent to choosing the gamma prior distribution with mean 0.5N i (half of the total370

count for the given node) and variance 0.5N i/K. Although the selection of these prior parameter371

values may be arbitrary in general, we based our choice of the prior mean on the reasoning that372

the baseline rate should be lower than the data average due to the creation of certain events by373

excitation. In addition, the variance is sufficiently small to ensure that the prior information, or374

regularisation, is not dominated by the sample size. We also set c = 2.5K and d = 10.25K for the375

beta prior distribution, which gives the mean 1/6 and variance in the order of o(1/K). We make376

this selection to prolong the impact of excitation by avoiding a decay rate that is too close to 1.377

This selection is again arbitrary. For the remainder of our work, we will utilize this approach to378

select prior information for the MM algorithm. Our results, as demonstrated in Figures 6 and 7,379

clearly illustrate that the use of regularization enables the algorithm to produce significantly more380

accurate outcomes that closely approximate the ground truth.381

We use the same simulated data to test ExPKF. Recall that we must assume a fixed decay rate382

for ExPKF to achieve efficient algorithms via the rank-1 update. We will discuss this issue later383

in this section. We set P0 = 10−4I and Qk = 10−5I for all k = 1, . . . ,K. The initial guess of the384

µj is set to be half of the data average of the j−th node. Figure 8 illustrates that the ExPKF385

algorithm can achieve accuracy comparable to that of the MM algorithm with regularization in386

capturing network structures. However, ExPKF requires a known decay rate value for all nodes,387

which was used in this experiment. In practice, decay rates may vary and be unknown for different388

nodes. To overcome this issue, we explore a method to identify the optimal decay rate γi, assuming389

a uniform decay rate for all nodes. Specifically, we perform a one-dimensional maximization based390

on the average log predictive probability (2.1). To calculate the average log predictive probability,391

we use the parameter estimate obtained from the previous time step (θ̄k−1) and evaluate (2.1) at392

time step k, averaging over all time steps. Figure 9 demonstrates that maximizing the predictive393

probability yields the optimal decay rate.394

Moreover, the network structure appears to be highly robust to parameter misspecification, as395

shown in Figure 10 for the ground truth 3 scenario. Despite the presence of spurious links caused by396

incorrect decay rates, the primary network structure closely resembles the true structure. Similar397

results are observed for the other ground truths, although they are not presented in this study.398

5.2 Estimation under model misspecification399

In this experiment, we will generate test data from an agent-based model (ABM) on a set of nodes400

featuring an excitation network structure, which will then be estimated within the Hawkes model;401

hence, a model misspecification problem. We adopt a model inspired by the ABM in [34] to simulate402
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Figure 6: The estimated network structure obtained from the MM algorithm with regularisation for three
different ground truths. The length of the data is varied to demonstrate the convergence to the ground truth.

the random movement of an “agent” between nodes through the network edges. During a time403

interval (t, t+δt), an agent located at a node s creates a number of “events” independently, following404

a Poisson probability with mean As(t)δt. The total number of events generated at s during (t, t+δt)405

is denoted by Es(t). The discrete-time dynamic of As(t) is given by As(t) = A0
s +Bs(t), where A0

s406

is a static, node-dependent baseline rate, and Bs(t) is a dynamic component that follows the rule:407

Bs(t+ δt) =

[
(1− ηs)Bs(t) + ηs

∑
s′∼s

Bs′(t)

]
(1− ωsδt) +

∑
s′∼s

w(s, s′)Es′(t). (5.1)

The interpretation of these parameters is listed below:408

• 0 < ωs < 1 is the node-dependent decay rate;409

• 0 < ηs < 1 is the node-dependent diffusion rate;410

• w(s, s′) ≥ 0 defines the strength of the event-driven excitation rate that the node s′ has on411

the node s and we write s′ ∼ s if w(s, s′) > 0.412

If an agent generates one or more events, the agent will be removed from the simulation. Otherwise,413

the agent will move from a node s to s′′ such that w(s, s′′) > 0 based on a discrete probability414

distribution415

q(s, s′′; t) :=
As′′(t)∑

s′∼s
As′(t)

. (5.2)
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Figure 7: The estimated network structure obtained from the MM algorithm without regularisation for three
different ground truths. The length of the data is varied to demonstrate the convergence to the ground truth.

Prior to a simulation of the next time step, new agents will be independently created for each416

node according to a Poisson distribution with mean Γsδt where Γs is a fixed parameter. The key417

difference between the Hawkes and ABM models is that the Hawkes model’s network structure418

provides only data-driven excitation, whereas the ABM network structure determines the agents’419

excitation, diffusion, and probabilistic movement of agents.420

The focus of this experiment is on the structure of w(s, s′). To this end, we define an “influence”421

matrix W such that its s−th row and s′−th column entry is w(s, s′), and reconstruct the pattern of422

non-zero elements of W using the ExPKF and MM methods. It is important to note that no ground423

truth is available for this experiment. Although the dynamics of the ABM exhibit similarities to424

the Hawkes process in terms of influence effects, diffusion effects are also present in the ABM but425

absent from the Hawkes process. Nevertheless, we anticipate that the influence structure of the426

Hawkes model will be akin to that of the ABM when fitting the Hawkes model with ABM-simulated427

count data.428

We generated data of various lengths based on the same influence matrix pattern, represented by429

W with 64 nodes, as illustrated in Figure 11. The influence structure is sparse and irreducible, and430

we considered two cases. In Case 1, we set all non-zero influences to w(s, s′) = 3 for s, s′ ∈ 1, . . . , 64,431

15



Figure 8: The estimated network structure obtained from the ExPKF algorithm using a true decay rate. The
length of the data is varied to demonstrate the convergence to the ground truth.

with Bs(0) = 0 for all s and δt = 0.05. Other static parameters were spatially uniform: ωs = 5,432

ηs = 0.25, and Γs = 3, for all s. Additional information on the simulated data for Case 1 is provided433

in Figure 11. The cumulative counts of the data can be grouped into three distinct categories based434

on the unique values of the row sums of W . Most time intervals exhibit either no events or a single435

event, and the sample covariance of the count time-series indicates little correlation among the436

nodes.437

We use the simulated data to test ExPKF and MM. For ExPKF, we set Qk = 10−5I for all k438

and P0 = 10−4I for all nodes. Again, we set the initial value θ̄0 in the same manner as done with439

the previous experiment in Section 5.1. Figure 12 shows the estimated W based on ExPKF and440

MM. Interestingly, both methods can correctly reconstruct the pattern of the influence matrix W441

despite the model misspecification. The results improve with longer data series. Notably, ExPKF442

produces a result with less “noise” in the part that is supposed to have zero influence.443

We also examine Case 2 where we change the non-zero influences to w(s, s′) = 0.5, ηs = 1,Γs =444

0.5, keeping all the other parameter values the same. While the network pattern in Case 1 is445

manifested mostly through the excitation process (i.e. larger values of w(s, s′) and smaller values446

of ηs and Γs), the Case 2 has a weak excitation and generation rate of the new agents but increased447

diffusion. This change would make it more difficult to detect the influence pattern. Nonetheless,448

the network structure can still be detected as displayed in Figure 13. However, the data length449

required to achieve a good result has to be longer than that of the Case 1; note that the average450

number of counts per time step is 0.15 for Case 1 but only 0.025 for Case 2.451

The errors based on the Frobenius norm and the Hellinger distance for different data lengths452

are analysed in Figure 14. When computing both error measures, we normalise W so that the sum453

of all elements is 1. This is necessary since we have no numerical ground truth to compare against454

and should evaluate the error based only on the network structure. Both error measures suggest a455

16



0.2 0.4 0.6

3.16

3.165

3.17

3.175

3.18

3.185

P
re

d
ic

ti
v
e
 L

ik
e
li
h
o
o
d

Ground truth 3

0.2 0.4 0.6

8.93

8.935

8.94

8.945

8.95

8.955

P
re

d
ic

ti
v
e
 L

ik
e
li
h
o
o
d

Ground truth 2

0.2 0.4 0.6

2.57

2.575

2.58

2.585

2.59

2.595

2.6

P
re

d
ic

ti
v
e
 L

ik
e
li
h
o
o
d

Ground truth 1

Figure 9: Comparing the predictive log likelihood for various values of decay rate, γ. The vertical line
indicates the true value of the decay rate. The data with length of 20000 is used to produce this result.
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Figure 10: Comparing the network structure for the ground truth 3 when the value of decay rate, γ, is
incorrectly specified.

small improvement of the ExPKF results, which is consistent with the visualisation of Figure 12.456

6 Email network data457

6.1 Small email network458

In this section, we analyse the Ikenet dataset consisting of log files from email transactions between459

22 anonymized officers at West Point Military Academy over a one-year period, which is available to460

download via https://github.com/naratips/Ikenet.git. The dataset contains the time-stamps461

of outgoing emails and their corresponding receivers. Table 1 displays the top 9 sender-receiver462

pairs in the dataset, ranked by the number of out-going emails. The data clearly highlights the463

overwhelmingly large amount of mutual email correspondence for the pairs (9, 18) and (11, 22).464

Previous studies on this dataset have utilized information about both the sender and recipients of465

emails [13, 46]. The Hawkes model with the exponential decay rate was used in [13] where the rate466

of sending out an email for a given node is driven by the events of emails received by the given node.467

For our experiment, we will focus solely on information about the outgoing emails. Therefore, the468

“influence” in our analysis can be interpreted as the effect of the number of emails sent out by other469

nodes on the rate of sending out emails (without any knowledge of the recipients). To demonstrate470

the methods in terms of count data, we aggregated the timestamp data of outgoing emails into a471

time-series of count data with a uniform temporal interval of dt = 0.1days. Figure 15 shows the472

total number of counts for each node and the proportion of non-zero counts per time step. Note473

that despite having the number of outgoing emails as large as node 18, node 13 is not among the474
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Figure 11: Data simulated from ABM model. The left most plot illustrates the influence matrix W . The
second plot from the left shows the cumulative number of events for all nodes. The third plot is the frequency
distribution of the count. The right most plot is the sample covariance matrix.
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Figure 12: MM and ExPKF estimation of the influence matrix using different data length for Case 1, which
has a strong excitation effects.

top pairs (9, 18) and (11, 22).

sender 18 9 22 11 15 8 18 13 18

receiver 9 18 11 22 13 18 8 17 22

% of total 6.95 5.97 3.97 3.01 1.96 1.89 1.87 1.78 1.75

Table 1: Top 9 sender-receiver for the Ikenet data ranked by the total number of outgoing emails.

475

As shown in Figure 16, networks constructed by MM and ExPKF are very similar. By comparing476

the dominant connections in the network with Table 1, we can see that the influence network477

highlights the top sender-receiver pairs (9, 18) and (11, 22) even though no knowledge of the email478

recipient network is used in the experiment.479

6.2 Large email network480

In this section, we carry out an experiment on a real-world (anonymised) email timestamp data481

similar to the previous section but at a much larger size. The original data can be found from482

the following link: https://snap.stanford.edu/data/email-Eu-core-temporal.html. How-483

ever, we focus only on the outgoing emails and we “cleaned up” the data by removing a continuous484
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Figure 13: MM and ExPKF estimation of the influence matrix using different data length for Case 2, which
has a weak excitation effect but strong diffusion.

period of extremely low count due to missing data, weekends and holidays. The cleaned-up data485

has 545 “nodes” and 61821 intervals (each interval is one hour long) in total with approximately486

97% of zero counts, 2% of one count per interval and the rest of the data has more than one count.487

Figure 17 shows the top 50 nodes with the highest number of emails sent and the cumulative count488

for all nodes.489

We test only ExPKF for this experiment since it requires less computer memory and runs faster490

than MM on our computational resources. We set the initial values αij = 0.1 and initialise µi by491

the average count on the i−th node. We set the decay rate β = 0.15 for all nodes; we tested a492

few other values, and the results are qualitatively the same. We present the estimated influence493

network in Figure 18. It is clear that the network is extremely sparse. We can identify only 5 edges494

that would suggest a strong influence. Although the number of emails sent by node 308 is close to495

the median value, we can identify its relatively higher influence on a few other nodes, all of which496

have a low number of sent-out emails.497
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Figure 16: Influence networks associated with the 22-node Ikenet email data constructed by MM algorithm
(Left) and ExPKF algorithm (Right).

7 Conclusion498

This work presents a significant development in foundations and methods for reconstructing in-499

fluence networks from a time-series of count data through parameter estimation of discrete-time,500

multivariate Hawkes or Cox processes. Developing methods for inference for count data is impor-501

tant as it is very common in applications when timestamp data is not available or does not make502

sense to collect, e.g. in epidemiology applications, but this area is significantly less developed than503

for timestamp data where, to the best of the authors’ knowledge, there were previously no meth-504

ods for dealing with count data. Despite count data having less information than the time-stamp505

data, we find that network reconstruction is still possible. We demonstrate an application of the506

ensemble-based EM algorithm for certain doubly-stochastic processes (such as Log-Gaussian Cox507

process) that can be presented in state-space form. Our implementation is based on the forward508

filtering-backward smoothing procedure using the bootstrap particle filter for the forward filtering,509

which is followed by backward smoothing simulation. We demonstrated the that the Ensemble-EM510

method is able to carry out the network reconstruction through synthetic experiments with known511

ground truths for small networks.512

This paper lays the foundations for other smoothing methods that could be used instead of513
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the forward-filtering-backward smoothing approach for the ensemble-based EM depending on the514

structure of the state model and the observational likelihood. For example, it was demonstrated in515

[29] that it is possible to bypass entirely the backward smoothing to compute expectations in the516

setting of an online EM method. This would significantly reduce the memory storage requirements517

for the backward smoothing simulation and allow for larger networks to be handled. Future work518

will look at the development of the ensemble-based approximate filtering using similar concepts519

from the ensemble-based Kalman smoother (EnKS) developed in geophysical applications [11].520

The EnKS uses the ensemble to approximate the density of the one-step push-forward state. This521

ensemble is then updated to fit the observation problem under the approximately linear model522

and Gaussian observational noise. In the current context, however, the observation equation can523

be nonlinear in the parameters and may not be close to Gaussian for a time-series with small524

counts. Further study in this direction to improve the E-step of the ensemble-based EM will open525

up applications to the influence network reconstruction problem with more complicated state-space526

models.527

We then presented the MM-based algorithm and the ExPKF algorithm to handle large-scale528

network problems, making them ideal for real-world applications when the linear Hawkes model is529

a reasonable assumption. The MM algorithm is designed to handle large batch data. We select a530

tight upper bound so that each parameter can be updated separately in a parallel manner. The531

ExPKF algorithm is a sequential approach that assumes a known decay rate for the Hawkes model.532

This key assumption enables the rank-1 update in the algorithm to avoid the costly inversion of a533

large matrix and by estimating each node independently, our algorithm can be efficiently applied to534

large-scale problems potentially for networks involving O(106) nodes. Investigation of the ExPKF535

on synthetic data again showed excellent results in determining the hidden network structure.536
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We demonstrated the performance of the methods using numerical experiments with known537

ground truths for both perfect and imperfect model scenarios, and both ExPKF and MM algorithms538

can recover the influence network structure when compared with the ground truth with good539

estimates of the strengths of the connections in the network. Several exciting areas for future540

research include looking at when the ExPKF algorithm becomes expensive for general Hawkes541

models where the inversion of the Hessian term in ExPKF cannot be performed via a rank-1542

update; hence it can become a numerical issue for large-scale problems. For MM algorithms, a543

tight upper bound must be specifically designed for a given model. Therefore, for more general544

models, finding a tight upper bound allowing for parallel update of parameters is an interesting area545

to investigate. One thing this work opens up is the possibility of large-scale network reconstruction546

for applications in social networks and neural networks that hitherto remained out of reach with547

current methods.548
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Appendix A: forward filtering-backward smoothing551

We provide a brief review of the particle filtering (PF) and backward smoothing simulation (BSS)552

used to generate smoothed particles required to evaluate the surrogate function in (2.9) for the553

ensemble-based EM algorithm.554

Particle Filter (PF): Let x
f(`)
k and w

f(`)
k denote, respectively, the `-th particle and its corre-555

sponding normalized weight respectively at time step k = 0, 1, . . . ,K, where K is the length of the556

time-series of count data.557

1. Initialization: Randomly generate Nf particles from an initial distribution

x
(`)
0 ∼ p (x0)

and set initial weights: w
(`)
k = 1/Nf for i = 1, . . . , Nf .558

2. Repeat this step for k = 1, . . . ,K,559

(a) Draw random samples from the conditional predictive distribution, denoted by x
p(`)
k

based on (2.4).

x
(`)
k ∼ N(x

(`)
k ; Ψ

(
x

(`)
k−1

)
,Q)

and then generate the predictive conditional intensity λ
j,(`)
κ = exp

(
x
j,(`)
k

)
+ gjk for all560

nodes j = 1, . . . ,m based on (2.5)561

(b) Update (unnormalized) weights based on the likelihood model

w̃
f(`)
k ∝ w(`)

k−1

m∏
i=1

(λik)
∆N i

k exp(−λikδt).

and then normalize the weight by

w
(`)
k :=

w̃
f(`)
k

N∑
`=1

w̃
f(`)
k

.
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(c) Perform resampling to add additional Monte Carlo variation when the effective sample
size is low. We use the criteria below:

Neff :=
1

Nf∑
`=1

(
w

(`)
k

)2

< 0.5Nf .

There are a number of methods for resampling. For simplicity, we use the systematic562

sampling algorithm described in [21], which costs O(Nf )563

Backward Smoothing Simulation (BSS):564

Let x
s(`)
k denote the particle of the `-th smoothing path at time step k = 0, 1, . . . ,K.565

1. Initialization: Suppose x
f(`)
0:K and w

f(`)
0:K , for i = 1, . . . , Nf , have been computed from (and566

stored during) the filtering process. Select x
s(`)
K = x

f(`)
K with probability w

f(`)
K .567

2. Repeat this step (backward in time) for k = K − 1, . . . , 0,568

(a) For ` = 1, . . . , Nf , calculate new weights according to (2.4)

w
s(`)
k ∝ wf(`)

k p
(
x
s(`)
k+1 | x

f(`)
k

)
= w

f(`)
k N

(
x
f(`)
k ;x

s(`)
k+1,Q

)
(b) Randomly select x

s(`)
k = x

f(`)
k with probability w

s(`)
k . Repeat Step 1 and Step 2 NS569

times, where Ns is the desired number of smoothing trajectories.570

The smoothing trajectories, x
s(`)
0:K for ` = 1, . . . , Ns will then be used to estimate the parameters in571

the M-step of the EM algorithm, see again (2.9).572

Appendix B: Maximization of Qx in (2.11)573

By neglecting Q0 in (2.11), we can find µ
(κ+1)
1 , ω

(κ+1)
1 and ε(κ+1) by maximizing Qx only. Let

β = (1− ω1δt) and γ = ω1µ. We can rewrite Qx by

Qx = − 1

2Nsε2δt
‖y −Az‖2 − 1

2
K log ε,

where z = [β, γ]ᵀ, y =
[
x
s(1)
1 , . . . , x

s(Ns)
K , . . . , x

s(1)
K , . . . , x

s(Ns)
K

]ᵀ
and

A =



x
s(1)
0 δt
...

...

x
s(1)
K−1 δt
...

...

x
(sNs)
0 δt

...
...

x
s(Ns)
K−1 δt


.

Thus, maximizing Qx is equivalent to finding z to “solves” the problem min‖y − Az‖2, which574

is nothing but the normal equation if AᵀA is full-rank or other techniques may be required to575

regularize the solution. However, since z has to be positive, a quadratic programming should be576

used if unconstrained minimization fails to produce the desired positive solution.577
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After obtaining z(κ+1) =
[
β(κ+1), γ(κ+1)

]ᵀ
, we can recover ω

(κ+1)
1 , µ(κ+1) from β(κ+1), γ(κ+1). We

also find the maximizing solution of ε by

ε(κ+1) =
1

NSK

Ns∑
`=1

K∑
k=1

(
x
s(`)
k −Ψx(x

s(`)
k−1)

)2
,

using ω
(κ+1)
1 , µ(κ+1) in Ψx above.578
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