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 A B S T R A C T

Identifying key influencers from time series data without a known prior network structure is a challenging 
problem in various applications, from crime analysis to social media. While much work has focused on event-
based time series (timestamp) data, fewer methods address count data, where event counts are recorded in 
fixed intervals. We develop network inference methods for both batched and sequential count data. Here 
the strong network connection represents the key influences among the nodes. We introduce an ensemble-
based algorithm, rooted in the expectation–maximization (EM) framework, and demonstrate its utility to 
identify node dynamics and connections through a discrete-time Cox or Hawkes process. For the linear 
multidimensional Hawkes model, we employ a minimization–majorization (MM) approach, allowing for 
parallelized inference of networks. For sequential inference, we use a second-order approximation of the 
Bayesian inference problem. Under certain assumptions, a rank-1 update for the covariance matrix reduces 
computational costs. We validate our methods on synthetic data and real-world datasets, including email 
communications within European academic communities. Our approach effectively reconstructs underlying 
networks, accounting for both excitation and diffusion influences. This work advances network reconstruction 
from count data in real-world scenarios.
1. Introduction

This work is motivated by conventional applications of continuous-
time Hawkes processes utilized to model the temporal clustering as well 
as mutual excitation network driven by the timestamp data, i.e. the 
times of events. The continuous-time point-process Hawkes model was 
first introduced by Hawkes [1] to capture a self-excitation process, used 
particularly for seismic events [2]. Since then, it has been extended to 
multivariate Hawkes process to model the mutual excitation structure 
or influence network structure. This development has led to emerging 
applications of point-process Hawkes model to seismic analysis [2,3], 
urban crime analysis [4–7] social network analysis [8–15], financial 
time-series analysis [16–19], contagious disease network [20–22] and 
deep learning network [23–27].

To reconstruct the influence network from a time series of times-
tamp data, most of the above work typically used the Expectation–
Maximization (EM) or Minimization–Majorization (MM) framework to 
construct a surrogate function (i.e., tight upper bound function) for the 
negative log-likelihood function. The main advantage of this approach 
is that it may help decouple the parameter space when optimizing the 
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surrogate function, accelerating the computational task. For a simple 
excitation kernel, such as the exponential decay kernel, a closed-form 
method for the parameter update can be derived. A nonparametric exci-
tation kernel can also be used within the EM and MM approach, where 
the Euler–Lagrange equation can be derived for the optimization of the 
surrogate function [28] and the regularization to promote sparsity [29]. 
Other techniques have also been developed to estimate non-parametric 
kernels; see for instance [16,30,31]. A fully-Bayesian, parallel inference 
algorithm was also developed in [32] to model the excitation structure 
by random graph models which allows conjugate prior for efficient 
inference via Markov chain Monte Carlo.

The influence network within multi-dimensional Hawkes models 
can also be linked to Granger-causality in temporal point processes
[33]. In the context of this framework, an event generated by 𝑥𝑗
is considered to ‘‘Granger-cause’’ the event associated with 𝑥𝑖 if the 
likelihood function of events in 𝑥𝑖(𝑡), given the history of all events 
up to time 𝑡, decreases when the history of events generated by 𝑥𝑗
is omitted. The application of the multivariate Hawkes model in the 
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context of Granger causality provides interpretability of the results. It 
was demonstrated in [31] that 𝑥𝑗 does not Granger-cause 𝑥𝑖 when the 
(pairwise) excitation kernel used by 𝑥𝑗 to ‘excite’ 𝑥𝑖 is zero. Applications 
of Hawkes model to discover Granger-causality were investigated with 
real-world data in [34–36]. However, this work is limited to certain 
conditional independence of the excitation process, while some data 
may exhibit inhibition or interaction. Additionally, to the best of our 
knowledge, the connection between the excitation (or influence) net-
work and Granger causality has not been extended to the case of count 
data modelled by the discrete-time Hawkes process. Therefore, the 
influence network derived from count data may or may not correspond 
to the causal network.

Similar to the timestamp data, a time series of count data may 
exhibit self-excitation, wherein a high count is often followed by several 
higher counts, e.g., in a time series of epileptic seizure counts [37]. This 
data is often easier to collect and more common in applications, for 
instance in epidemiology, where one can only sensibly collate count 
data. Moreover, multiple time series may demonstrate an ‘‘influencing’’ 
characteristic, where a high count from one series is followed by high 
counts in others. For instance, a cluster of earthquakes in a particular 
region could trigger seismic activities in adjacent regions, while inci-
dents occurring in one area of a city could lead to similar occurrences in 
other areas, e.g., urban crimes [6,38]. We can conceptualize the sources 
of these multiple time series as nodes in a network, and by uncovering 
the influence structure of such a network, we can gain insights into the 
evolving dynamics of the network over time, such as the emergence 
of synchronization of node dynamics. However, there are no methods 
(to the best of the author’s knowledge) for carrying out the network 
reconstruction problem from time series count data.

The primary aim of this work is to identify an influence net-
work from a time series consisting of count data that opens up more 
real-world applications of network reconstruction via Hawkes-type pro-
cesses. The count data inference problem is significantly more challeng-
ing since data is aggregated and therefore there is a loss of information 
relative to the time-stamp data which needs to be accounted for in 
the inference problem. Recent research [39] has developed a novel 
Hawkes-type non-homogeneous Poisson process for count data, with a 
deterministic intensity function equal to the expectation of a Hawkes 
process intensity and parameters are fitted based on the interval-
censored likelihood function derived therein. Here we adopt different 
models that utilize a discrete-time, multidimensional Cox or Hawkes 
process to model the excitation effects among nodes driven by count 
data. Within this framework, the magnitude of the influence can be 
quantified by the excitation rate parameters incorporated into the 
model. Therefore, the task of identifying the influence network re-
duces to estimating the parameters of the Cox or Hawkes model. This 
work presents three distinct methodologies for parameter estimation 
for count data problems: (1) Ensemble-based EM, (2) Minimization–
Majorization (MM) technique and (3) a sequential algorithm based on 
approximate second-order filtering.

For the ensemble-based EM, the Hawkes process can take a general 
‘‘state-space’’ form (e.g., doubly stochastic Poisson point process) that 
consists of state dynamical system and observation equation. Within 
the context of EM, the ‘‘missing’’ data is the unobserved sample path of 
the state. Therefore, the E-step requires a Monte Carlo sampling of the 
sample paths. This approach was previously used in the context of the 
model identification for the Kalman filter [40,41]. We demonstrate how 
this idea can be applied to network reconstruction of a small network.

The MM algorithm is developed for batch data inference. For this al-
gorithm, we limit the node dynamic model to a discrete-time dynamical 
system analogous to the exponential-decay kernel of the multivariate 
Hawkes process. We show how one can derive an iterative method that 
minimizes a surrogate function such that the surrogate function is a 
‘‘tight’’ upper bound of the negative log-likelihood function for count 
data. We show how the iterative method can be parallelized.
2 
The sequential algorithm based on approximate second-order fil-
tering, called the extended Poisson–Kalman filter (ExPKF), is derived 
by approximating the mean and covariance matrix of the posterior 
density for the same dynamical systems Hawkes model used for the 
MM algorithm. We show how this leads to an efficient method under 
an assumption, where one can use a rank-1 update for the update of 
the covariance matrix with parallelization.

Our main contributions are the development of the foundations for a 
systematic approach to dealing with network influence reconstruction 
from count data. We present methods that deal with either complex 
state–space models for small networks or linear Hawkes processes for 
large networks. The ensemble-based EM method also captures uncer-
tainty quantification of the intensity estimate, while ExPKF provides a 
second-order moment for the network estimate. Uncertainty quantifi-
cation is very important in network reconstruction applications so that 
one can gain an understanding of the uncertainty of a link between two 
nodes occurring. This work opens up new avenues of research involving 
count data collected on networks, and the development of new methods 
for more general or other types of stochastic processes.

The paper is outlined as follows. In Section 2, we develop the 
ensemble-based EM algorithm for small networks. We then focus on 
a moderate-size network for a count-data model, inspired by the dis-
cretization of the exponential decay kernel of the continuous-time 
Hawkes process. The MM algorithm is developed for batch data infer-
ence in Section 3 and the extended Poisson–Kalman filter (ExPKF) is 
derived in Section 4. In Section 5, we demonstrate the validity of the 
proposed methods to reconstruct the influence network with various 
numerical experiments with known ground truths. We also demonstrate 
the utility of the method on large real-world email network data in 
Section 6 and conclude in Section 7.

2. Ensemble-based EM

We are interested in an inhomogeneous Poisson point process on 
a network with 𝑚 nodes, where the conditional intensity 𝜆𝑖𝑘 at the 𝑖th 
node is assumed to be a constant in the 𝑘−th time interval (𝑡𝑘, 𝑡𝑘+1). In 
other words, if 𝛥𝑁 𝑖

𝑘 is the number of events observed for the 𝑖−th node 
at the 𝑘−th time interval, we assume that 𝑃𝑟(𝛥𝑁 𝑖

𝑘 ∣ 𝜆𝑖𝑘) is a Poisson 
probability with mean 𝜆𝑖𝑘𝛿𝑡𝑘 where 𝛿𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘. The intensity 𝜆𝑖𝑘
depends on a 𝑛-dimensional parameter vector, 𝜃𝑖 ∶= [𝜃𝑖,1,… , 𝜃𝑖,𝑛]⊤. 
We concatenate all vectors 𝜃𝑖 to form a parameter vector 𝜃, i.e., 𝜃 ∶=
[𝜃1;⋯ ; 𝜃𝑚].

For simplicity, all the time intervals are assumed to have the same 
length 𝛿𝑡. At any given time step 𝑘, we assume conditional indepen-
dence so that the conditional joint density is given by 

𝑝(𝛥𝑁1
𝑘 ,… , 𝛥𝑁𝑚

𝑘
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

≡𝛥𝑁𝑘

|𝜆1𝑘,… , 𝜆𝑚𝑘 ) ∝
𝑚
∏

𝑖=1
(𝜆𝑖𝑘)

𝛥𝑁 𝑖
𝑘 exp(−𝜆𝑖𝑘𝛿𝑡). (2.1)

Let 𝛥𝑁1∶𝐾 ∶=
[

𝛥𝑁1,… , 𝛥𝑁𝐾
] denote time-series of count data up to 

the time step 𝐾 for all nodes. The log-likelihood function is then given 
by 

𝐋(𝜃) ∶= log 𝑝(𝛥𝑁1∶𝐾 ∣ 𝜃) =
𝑚
∑

𝑖=1

𝐾
∑

𝑘=1
log(𝜆𝑖𝑘(𝜃

𝑖))𝛥𝑁 𝑖
𝑘 − 𝛿𝑡

𝑚
∑

𝑖=1

𝐾
∑

𝑘=1
𝜆𝑖𝑘(𝜃

𝑖) + ,

(2.2)

where  is independent of 𝜃. The maximum likelihood method es-
timates the model parameter vector 𝜃 (in a parameter space 𝛩) by 
maximizing the log-likelihood function 
𝜃 ∶= argmax

𝜃∈𝛩
𝐋(𝜃). (2.3)

We assume that the discrete-time dynamic of 𝜆𝑖𝑘 is governed by a 
stochastic process of an unobserved ‘‘state’’ vector denoted by 𝐱𝑘 ∶=
[

𝐱1𝑘,… , 𝐱𝑚𝑘
] with 𝐱𝑖𝑘 ∈ 𝐑𝑑 : 

𝐱 = 𝛹 (𝐱 ;𝐩) + 𝜂 , (2.4)
𝑘 𝑘−1 𝑘
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where a function 𝛹 can be nonlinear, 𝐩 is a fixed parameter vector and 
𝜂𝑘 ∼ 𝑁(𝟎,𝐐). The conditional intensity, 𝜆𝑖𝑘, is assumed to be a function 
of the state vector, i.e., 
𝜆𝑖𝑘 = ℎ(𝐱𝑖𝑘;𝐪), (2.5)

where the link function of observation, ℎ, is usually nonlinear and 𝐪 is a 
fixed parameter vector. In this setting, the parameter vector is given by 
the augmented vector 𝜃 =

[

𝐩 𝐪
]

. The so-called complete data likelihood 
function is the joint probability density 𝑝(𝐱0∶𝐾 , 𝛥𝑁1∶𝐾 ∣ 𝜃), where 𝐱0∶𝑘
denotes the sequence of 𝐱0 up to 𝐱𝑘. The maximization problem for 
(2.2) can also be expressed by 

𝜃 ∶= argmax
𝜃∈𝛩

log∫ 𝑝
(

𝐱0∶𝐾 , 𝛥𝑁1∶𝐾 ∣ 𝜃
)

𝑑𝐱0∶𝐾 . (2.6)

We adopt the EM framework to construct an iterative algorithm for 
the state–space model to avoid a direct integration of the above joint 
density. The construction of our algorithm follows a similar approach 
for model identification for the Kalman filter presented in [40,41]. To 
this end, we denote the parameter estimate after 𝜅 iterations by 𝜃(𝜅). 
In the EM approach, we have to design a tight lower-bound function 
(i.e. minorization) that would be more tractable for maximization than 
the original marginal likelihood function. For the current case, a tight 
lower-bound (or surrogate) function for maximization is given by 


(

𝜃; 𝜃(𝜅)
)

= ∫ 𝑝
(

𝐱0∶𝐾 ∣ 𝛥𝑁1∶𝐾 , 𝜃
(𝜅)) log 𝑝

(

𝐱0∶𝐾 , 𝛥𝑁1∶𝐾 ∣ 𝜃
)

𝑑𝐱0∶𝐾

= E
[

log 𝑝
(

𝐱0∶𝐾 , 𝛥𝑁1∶𝐾 ∣ 𝜃
)]

.
(2.7)

which represents the E-step of the EM algorithm. The M-step then solves 
the maximization problem 
𝜃(𝜅+1) ∶= argmax

𝜃∈𝛩

(

𝜃; 𝜃(𝜅)
)

. (2.8)

Under the (first-order) Markovian assumption, we can decompose the 
surrogate function  (

𝜃, 𝜃(𝜅)
) by 


(

𝜃, 𝜃(𝜅)
)

= 𝑄0
(

𝜃, 𝜃(𝜅)
)

+𝑄𝑥
(

𝜃, 𝜃(𝜅)
)

+𝑄𝛥𝑁
(

𝜃, 𝜃(𝜅)
)

,

𝑄0
(

𝜃, 𝜃(𝜅)
)

= ∫ 𝑝
(

𝐱0 ∣ 𝛥𝑁1∶𝐾 , 𝜃
(𝜅)) log 𝑝

(

𝐱0 ∣ 𝜃
)

𝑑𝐱0,

= E
[

log 𝑝
(

𝐱0 ∣ 𝜃
)]

,

𝑄𝐱
(

𝜃, 𝜃(𝜅)
)

=
𝐾
∑

𝑘=1
∫ 𝑝

(

𝐱𝑘, 𝐱𝑘−1 ∣ 𝛥𝑁1∶𝐾 , 𝜃
(𝜅)) log 𝑝

(

𝐱𝑘 ∣ 𝐱𝑘−1, 𝛥𝑁1∶𝐾 , 𝜃
)

× 𝑑𝐱𝑘𝑑𝐱𝑘−1,

=
𝐾
∑

𝑘=1
E
[

log 𝑝
(

𝐱𝑘 ∣ 𝐱𝑘−1, 𝛥𝑁1∶𝐾 , 𝜃
)]

,

𝑄𝛥𝑁
(

𝜃, 𝜃(𝜅)
)

=
𝐾
∑

𝑘=1
∫ 𝑝

(

𝐱𝑘 ∣ 𝛥𝑁1∶𝐾 , 𝜃
(𝜅)) log 𝑝

(

𝛥𝑁𝑘 ∣ 𝐱𝑘, 𝜃
)

𝑑𝐱𝑘,

=
𝐾
∑

𝑘=1
E
[

log 𝑝
(

𝛥𝑁𝑘 ∣ 𝐱𝑘, 𝜃
)]

.

(2.9)

To maximize , we must assume the availability of 𝑝 (𝐱0 ∣ 𝜃
)

, 
𝑝
(

𝐱𝑘 ∣ 𝐱𝑘−1, 𝛥𝑁1∶𝐾 , 𝜃
)

, and 𝑝 (𝛥𝑁𝑘 ∣ 𝐱𝑘, 𝜃
)

. The initial density 𝑝 (𝐱0 ∣ 𝜃
)

may depend on the model parameter in general, depending on how 
we would like to generate the initial density for the state. If not, 
0 can be excluded from the maximization. The transition density 
𝑝
(

𝐱𝑘 ∣ 𝐱𝑘−1, 𝛥𝑁1∶𝐾 , 𝜃
) will depend on the model (2.4). Assuming a 

normal distribution for 𝜂𝑘 in (2.4), 𝑝
(

𝐱𝑘 ∣ 𝐱𝑘−1, 𝛥𝑁1∶𝐾 , 𝜃
) is also normal. 

The likelihood function 𝑝 (𝛥𝑁𝑘 ∣ 𝐱𝑘, 𝜃
) then follows the assumption 

in (2.1).
The expression in (2.7) suggests that if we can sample from

𝑝
(

𝐱0∶𝐾 ∣ 𝛥𝑁1∶𝐾 , 𝜃(𝜅)
)

, we can then estimate all the expectations in (2.9) 
using the sample paths, which we denote by 𝐱𝑠0∶𝐾 . The superscript 𝑠
stands for ‘‘smoothing’’ which will be explained below. The efficiency 
of the EM algorithm in this setting will depend strongly on the design 
3 
of the path sampling technique. We will use the forward filtering-
backward sampling procedure to obtain samples approximately from 
the joint smoothing distribution [41], which is a combination of parti-
cle filtering (PF) and backward simulation smoother (BSS) to generate 
𝐱𝑠0∶𝐾 .

Particle filtering is a sequential Monte Carlo (SMC) technique for 
non-linear filtering. In the current application, it can be used to sample 
𝑝
(

𝐱𝑘 ∣ 𝛥𝑁1∶𝑘, 𝜃(𝜅)
)

, i.e., only the observation up to the time step 𝑘 is 
used to estimate 𝐱𝑘. It enjoys great flexibility but suffers from filtering 
degeneracy, where most of the sample weights become zero as time 
increases. A resampling is required to mitigate this issue. We will still, 
however, employ it in our work for a low-dimensional problem. A brief 
discussion of PF algorithm is provided in Appendix  A. An extensive 
review of SMC and PF can be found in many review literature, to name 
a few here, [42–45].

Suppose that we have obtained the weighted, filtered particle 
(

𝐱𝑓 (𝑖)𝑘 ,𝐰𝑓 (𝑖)
𝑘

)

 for 𝑖 = 1,… , 𝑁𝑓 , where 𝑁𝑓  is the number of particles 
used in PF. The particles approximate 𝑝 (𝐱𝑘 ∣ 𝛥𝑁1∶𝑘, 𝜃(𝜅)

) but the EM 
algorithm requires 𝑝 (𝐱𝑘 ∣ 𝛥𝑁1∶𝐾 , 𝜃(𝜅)

) for any 𝑘 = 1,… , 𝐾. The BSS uses 
the filtered particles 

(

𝐱𝑓 (𝑖)𝑘 ,𝐰𝑓 (𝑖)
𝑘

)

 to generate the smoothing particles, 
(

𝐱𝑠(𝓁)𝑘 ,𝐰𝑠(𝓁)
𝑘

)

 for 𝓁 = 1,… , 𝑁𝑠, where 𝑁𝑠 and 𝑁𝑓  can be different. 
The algorithm for BSS is also provided in Appendix  A. We can then 
approximate the expectations in (2.9) based on 

(

𝐱𝑠(𝓁)𝑘 ,𝐰𝑠(𝓁)
𝑘

)

. Maxi-
mization of  in (2.9) to find 𝜃(𝜅+1) is then carried out numerically. 
We use the function fmincon in MATLAB to optimize . A useful by-
product of this approach is that the ensemble of sample paths of the 
conditional intensity 𝜆𝑖1∶𝐾 can be directly computed from the particles 
(

𝐱𝑠(𝓁)𝑘 ,𝐰𝑠(𝓁)
𝑘

)

 at the last iteration of the EM algorithm. The ensemble-
based EM method allows for uncertainty quantification of the intensity 
paths. In the subsequent subsections, we will demonstrate how the 
ensemble-based EM may be used for some discrete-time Hawkes model 
that can be represented in a state–space form.

2.1. Log-Gaussian Cox process (LGCP)

We consider a univariate LGCP (i.e. 𝑚 = 1) given by 

𝑥𝑘 = (1 − 𝜔1𝛿𝑡)𝑥𝑘−1 + 𝜔1𝜇𝛿𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝛹𝑥(𝑥𝑘−1)

+𝜖
√

𝛿𝑡𝜂𝑘,

𝑔𝑘 = (1 − 𝜔2𝛿𝑡)𝑔𝑘−1 + 𝛼𝛥𝑁𝑘−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=𝛹𝑔 (𝑔𝑘−1)

,

𝜆𝑘 = exp(𝑥𝑘) + 𝑔𝑘.

(2.10)

We assume 𝜂𝑘 has the standard normal distribution 𝑁(0, 1). The param-
eter vector is 𝜃 =

[

𝜇, 𝜔1, 𝜖, 𝛼, 𝜔2
] and the state variable is 𝑥𝑘 ∈ R. All 

parameters are assumed to be positive. Hence, ‘‘inhibition’’ (i.e. 𝛼 < 0) 
is not considered in this work.

We first consider a synthetic experiment with a ground truth 𝜃∗ =
[1.5, 0.5, 2.5, 0.5, 1.5] and simulate 𝛥𝑁1∶𝐾 and 𝜆1∶𝐾 for 𝐾 = 4000 with 
𝛿𝑡 = 0.1 and initial condition 𝑥0 = 1.5 and 𝑔0 = 0. We initialize the EM 
algorithm with parameter vector 𝜃(0) = [3, 0.25, 1.25, 0.25, 0.75]. At the 
𝜅−th iteration, the E-step requires a prior sample of the state vector 
𝐱0. We use a prior assumption 𝑥0 ∼ 𝑁(𝜇(𝜅), 𝜖(𝜅)𝛿𝑡) and set 𝑔0 = 0. 
The number of particles is 𝑁𝑓 = 400 and we set 𝑁𝑠 = 0.25𝑁𝑓  in our 
experiment. After obtaining the smoothing particle 𝐱𝑠(𝜅) from E-step 
(using a combination of PF and BSS as explained in Appendix  A), we 
can evaluate the −function in (2.9). The −function (after omitting 
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Fig. 1. (Top) Comparison between filtered particles 𝜆𝑓 (𝓁)0∶𝑘 , smoothed particles 𝜆𝑠(𝓁)0∶𝑘  and ground truth. The simulated data is also shown in the bar plot. (Bottom, left) The progress 
of the relative error of the parameter vector 𝜃 over 16 EM iterations. (Bottom, right) The propagation of the relative error for the conditional intensity. Note that we have fixed 
the number of EM iterations to 16; no stopping criteria have been implemented in this example.
the terms irrelevant to maximization) has the following form: 

0(𝜃, 𝜃(𝜅)) = − 1
2𝑁𝑠

𝑁𝑠
∑

𝓁=1

(

𝑥𝑠(𝓁)0 − 𝜇(𝜅)
)2

𝛿𝑡

𝐱(𝜃, 𝜃(𝜅)) = − 1
2𝑁𝑠

𝑁𝑠
∑

𝓁=1

⎡

⎢

⎢

⎢

⎣

𝐾
∑

𝑘=1

(

𝑥𝑠(𝓁)𝑘 − 𝛹𝑥

(

𝑥𝑠(𝓁)𝑘−1

))2

𝜖2𝛿𝑡
+𝐾 log 𝜖

⎤

⎥

⎥

⎥

⎦

𝛥𝑁 (𝜃, 𝜃(𝜅)) = 1
2𝑁𝑠

𝑁𝑠
∑

𝓁=1

[ 𝐾
∑

𝑘=1
𝛥𝑁𝑘 log 𝜆𝑘 − exp(𝜆𝑘)𝛿𝑡

]

(2.11)

When 𝐾 is large, the term 0(𝜃, 𝜃(𝜅)) in (2.9) can be neglected. Fur-
thermore, 𝑥 depends on only 𝜇, 𝜔1, 𝜖 and 𝛥𝑁  depends only on 𝛼, 𝜔2. 
We can then solve the two maximization problems in parallel to obtain 
𝜃(𝜅+1). Maximizing 𝑥 has a closed-form solution, see Appendix  B, and 
can be readily computed. However, since 𝑥 and 𝛥𝑁  are maximized 
in parallel, numerically maximizing 𝛥𝑁  becomes a bottleneck to the 
speed of the algorithm. For this experiment, we numerically maximize 
both 𝑥 and 𝛥𝑁  using the interior point algorithm implemented in 
fmincon in MATLAB [46]. The constraint optimization is required to 
ensure the positive values of parameters.

The results are shown in Fig.  1.
We also compare the filtered intensity 𝜆𝑓 (𝓁)0∶𝑘  with the smoothed 

intensity 𝜆𝑠(𝓁)0∶𝑘  in Fig.  1, which are computed from 𝑥𝑓 (𝓁)0∶𝑘 , 𝑥
𝑠(𝓁)
0∶𝑘  using 

the observation equation in (2.10), respectively. Fig.  1 clearly shows 
that the smoothed particles have smaller variation (or uncertainty) than 
that of the filtered particles. The relative error for the parameter vector 
decays quickly after a few steps and then becomes stable. We compute 
the relative error for each particle 𝜆𝑠(𝓁)0∶𝑘  and report the average relative 
error in Fig.  1.
4 
2.2. Logistic LGCP

We modify the conditional intensity function in (2.10) to 

𝜆𝑘 = ℎ
(

exp(𝑥𝑘) + 𝑔𝑘
)

, ℎ(𝑧) = 𝐴
1 + 𝐵 exp(−𝑧)

. (2.12)

This modification incorporates the upper bound 𝜆𝑘 ≤ 𝐴 to the con-
ditional intensity. The parameter vector is 𝜃 =

[

𝜇, 𝜔1, 𝜖, 𝛼, 𝜔2, 𝐴, 𝐵
]

and the state vector is 𝐱𝑘 ∈ R. The required −function is the same 
as (2.11).

We select a ground truth 𝜃∗ = [0.5, 0.5, 0.25, 9, 0.5, 12, 4] and simulate 
𝛥1∶𝐾 and 𝜆1∶𝐾 for 𝐾 = 2000 with 𝛿𝑡 = 0.1 and initial condition 𝑥0 = 1
and 𝑔0 = 0. We initialize the EM algorithm with parameter vector 𝜃(0) =
[1, 0.25, 0.5, 4.5, 1, 24, 8]. As shown in Fig.  2, a fast reduction of both 
relative errors is obtained at the beginning and then slows down as the 
algorithm converges. This observation is common for MM algorithms in 
general. In the early stages of the iterations, the parameter estimates are 
often far from the nearest stationary point (local maximum), resulting 
in relatively large ‘‘gradient components’’ (in an informal sense). Since 
the EM algorithm can be roughly interpreted as performing coordinate 
ascent in the latent or complete-data space [47–49], these large gradi-
ents lead to significant updates in the parameters and, consequently, 
substantial increases in the likelihood.

As the algorithm approaches a local maximum (or saddle point), 
the likelihood surface becomes flatter due to reduced curvature. This 
causes the parameter updates to shrink, as the re-estimated values in 
each iteration undergo smaller changes once they are closer to the 
optimal fit. As a result, the likelihood’s improvements diminish with 
each subsequent iteration.

2.3. Log-Gaussian Cox process (LGCP) on a small network

We consider a multivariate extension of LGCP on a network where 
the links of the network describe an ‘‘influence’’ structure through a 
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Fig. 2. (Top) Comparison between smoothed particles 𝜆𝑠(𝓁)0∶𝑘  and ground truth for the Logistic LGCP. The simulated data is also shown in the bar plot. (Bottom, left) The progress 
of the relative error of the parameter vector 𝜃 over 35 EM iterations where the change in the relative error of 𝜃 is lower than 10−5. (Bottom, right) The progress of the relative 
error for the conditional intensity.
(pairwise) excitation process. We demonstrate the utility of the ensem-
ble EM approach for the multivariate LGCP on the 𝑚 nodes, denoted by 
𝑥𝑗 for 𝑗 = 1,… , 𝑚, that has the following form: 

𝑥𝑖𝑘+1 =

[

(1 − 𝜂𝑖)𝑥𝑖𝑘 + 𝜂𝑖
∑

𝑗≠𝑖
𝑥𝑗𝑘

]

(1 − 𝜔𝑖
1𝛿𝑡) + 𝜔𝑖

1𝜇
𝑖𝛿𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝛹 𝑖

𝑥(𝑥𝑖𝑘)

+𝜖𝑖
√

𝛿𝑡𝜁𝑘,

𝑔𝑖𝑘+1 = (1 − 𝜔𝑖
2𝛿𝑡)𝑔

𝑖
𝑘 +

𝑚
∑

𝑗=1
𝛼𝑖𝑗𝛥𝑁 𝑗

𝑘 , 𝜆𝑖𝑘+1 = exp(𝑥𝑖𝑘+1) + 𝑔𝑖𝑘+1,

(2.13)

where 𝜂𝑗 is the diffusion coefficient strength at each node, 𝜔𝑗
1 and 

𝜔𝑗
2 are the decay rates at each node, 𝛼𝑖𝑗 are the excitation coupling 
parameters, 𝜖𝑗 > 0 and 𝜁𝑘 ∼  (0, 1) describes the noise at each 
node. The −function is defined similarly to (2.11). A (homogeneous) 
diffusion effect is included in the dynamics of 𝑥𝑗𝑘 and the event-driven 
excitation process between nodes is incorporated in the dynamic of 
𝑔𝑗𝑘. The mutual excitation of 𝑔

𝑗
𝑘 is driven not only by the count data 

from the node 𝑗 itself, but also by all other nodes. Both diffusion and 
excitation contribute to the increment of the conditional intensity of 
other nodes in the network in the next time step. The state variable 
is the vector 𝐱𝑘 =

[

𝑥1𝑘,… , 𝑥𝑚𝑘
]

∈ R𝑚. Note that if there is no diffusion 
term, we could compute the smoothed path of each 𝑥𝑗𝑘 in parallel for 
the E-step.

We consider an experiment with the following parameters: 𝛿𝑡 = 0.1, 
𝜔𝑗
1 = 0.5∕𝛿𝑡, 𝜔𝑗

2 = 0.9∕𝛿𝑡, 𝜂𝑗 = 0.1, 𝜇𝑗 = 0.5, 𝜖𝑗 = 0.125 and 𝑚 = 3. 
The ground truth of the mutual excitation structure 𝛼𝑖𝑗 is given in 
Fig.  5. We test the experiment with different simulated data lengths 
𝐾 = 500, 1000, 2000. The initial ensemble for 𝑥𝑗0 is drawn independently 
from 𝑁(0, 5𝜖𝑗 ) using 𝑁 = 600 particles. The initial structure of the 
network is set to 𝛼𝑖𝑗 = 0.9, i.e., a fully connected network with a uniform 
excitation rate of 0.9. The experimental results are shown in Figs.  3 to 
5. The errors of the parameter estimation for various values of 𝐾 are 
shown in Fig.  3, all of which exhibit fast error reduction in the first 
step and then slowly decrease afterwards, similar to the univariate case 
shown in Section 2.1. The smoothed path at the final EM step is shown 
in Fig.  4 for 𝐾 = 2000, which demonstrates a good estimate of the 
true intensity. The results for the other data lengths are similar. Most 
importantly, the network structure, which is the main interest of this 
work, can be accurately captured as shown in Fig.  5 if the data length 
is sufficiently long enough. Note that we have tested several cases and 
found similar results when the initial guess of the parameters is ‘‘close 
5 
enough’’ to the true parameters in a sense that the stability of the model 
is sustained; if the initial parameter is not ‘‘close enough’’ to the true 
values, the method may fail to converge.

3. Majorization-minimization (MM)

In this section, we focus only on the discrete-time model analogous 
to the exponential-decay kernel of the multivariate Hawkes process. In 
particular, the conditional intensity 𝜆𝑗𝑘 is given by 

𝜆𝑖𝑘+1 = 𝜇𝑖 + (𝜆𝑖𝑘 − 𝜇𝑖)𝛾 𝑖 +
𝑚
∑

𝑗=1
𝛼𝑖𝑗𝛥𝑁 𝑗

𝑘 , 𝑖 = 1,… , 𝑚, (3.1)

where 𝜇𝑖 > 0, 𝛼𝑖𝑗 ≥ 0, 0 < 𝛾 𝑖 < 1 and 𝛥𝑁 𝑗
0 = 0. The parameter 𝜇𝑖 rep-

resents the baseline rate where the number of events are endogenously 
generated based on a Poisson distribution with the mean 𝜇𝑖. We assume 
that the initial condition is the same as the baseline, i.e., 𝜆𝑖0 = 𝜇𝑖. The 
parameter 𝛼𝑖𝑗 for 𝑖 ≠ 𝑗 models increases in the likelihood to generate 
more counts for the 𝑖th node immediately after observing counts for the 
𝑗th node. The parameter 𝛾 𝑖 is the decay rate of 𝜆𝑖𝑘 toward the baseline 
rate. The recursive model (3.1) can also be rewritten in a closed form 
by 

𝜆𝑖𝑘 = 𝜇𝑖 +
𝑘
∑

𝓁=1
𝐵𝑖
𝓁

(

𝛾 𝑖
)𝑘−𝓁 & 𝐵𝑖

𝓁 ∶=
𝑚
∑

𝑗=1
𝛼𝑖𝑗𝛥𝑁 𝑗

𝓁−1. (3.2)

This section provides an iterative procedure to minimize the neg-
ative log-likelihood function of the discrete-time Hawkes process. In 
the continuous-time setting, where the timestamp data is available, the 
branching process can be (artificially) assumed to define the missing 
data (i.e. immigrant, ancestor or descendent) and the complete likeli-
hood function. However, it is difficult to replicate this idea in the count 
data setting. Instead, we employ the MM technique to derive an EM-like 
algorithm for the multivariate Hawkes model driven by count data.

We first present a derivation of the MM algorithm for the case that 
the decay rate 𝛾 𝑖 = 𝛾 is fixed and known. Due to the conditional 
independence of 𝜆𝑖𝑘 for all 𝑖 = 1,… , 𝑚 and 𝑘 = 1,… , 𝐾 given the 
parameters, we can separately minimize the negative log-likelihood 
function of each node to estimate 𝜇𝑖 and 𝛼𝑖𝑗 . For this reason, when 
estimating parameters for the 𝑖th node, we will avoid the notation 
clutter by omitting the superscript 𝑖 from the subsequent discussion 
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Fig. 3. (Left) Relative error of the parameter vector at each EM-step.(Right) Relative error of the conditional intensity at each EM-step. We stop at 5 iterations when the change 
in the relative error of 𝜃 is lower than 10−5.
Fig. 4. From the top to bottom, the plot shows the smoothed path at the final step of the EM for node 1 to 3, respectively. For a clear visualization, only part of the trajectory 
is shown at the time step 𝑘 = 100–500. The bar plot beneath the intensity shows the simulated count data for each node.
Fig. 5. Estimated values of 𝛼𝑖𝑗 for various data length and the ground truth. The 𝑖−th row and 𝑗− column in the plot indicates 𝛼𝑖𝑗 .
in this section, e.g., 𝛼𝑖𝑗 will be written by 𝛼𝑗 without confusion. The 
negative log-likelihood for a given node is 

(𝜃) ∶= −
𝐾
∑

𝑘=1
log(𝜆𝑘)𝛥𝑁𝑘 + 𝛿𝑡

𝐾
∑

𝑘=1
𝜆𝑘 + , (3.3)

where 𝜃 = (𝜇, 𝛼1 … , 𝛼𝑚) and  is a constant. The MM algorithm 
is an iterative technique that updates the estimation of 𝜃(𝑛+1) at the 
𝑛 + 1 iteration by minimizing a surrogate function 𝑄(𝜃 ∣ 𝜃(𝑛)). For 
the minimization problem, the surrogate function is chosen to be a 
‘‘tight’’ upper bound function so that 𝑄(𝜃 ∣ 𝜃(𝑛)) ≥ (𝜃) for any 𝜃 and 
6 
𝑄(𝜃(𝑛) ∣ 𝜃(𝑛)) = (𝜃(𝑛)). Without loss of generality, we may assume 𝛿𝑡 = 1
here and ignore the constant  as well.

By applying Jensen’s inequality, a tight upper bound function of 
− log(𝜆𝑘(𝜃)) in (3.3), denoted by 𝑄𝑘(𝜃 ∣ 𝜃(𝑛)), can be constructed by 

− log(𝜆𝑘) ≤ 𝑄𝑘(𝜃 ∣ 𝜃(𝑛)) ∶= −
𝜇(𝑛)

𝜆(𝑛)𝑘

log

(

𝜆(𝑛)𝑘

𝜇(𝑛)
𝜇

)

−
𝑘−1
∑

𝑙=0

𝑚
∑

𝑗=1

𝜙(𝑛)
𝑘𝑙𝑗

𝜆(𝑛)𝑘

log

(

𝜆(𝑛)𝑘

𝜙(𝑛)
𝑘𝑙𝑗

𝜙𝑘𝑙𝑗

)

,

(3.4)

where 𝜙𝑘𝑙𝑗 ∶= 𝛼𝑗 (𝛾𝑗 )𝑘−𝑙−1𝛥𝑁 𝑗
𝑘. Clearly, we have 𝑄𝑘(𝜃(𝑛) ∣ 𝜃(𝑛)) =

− log(𝜆 (𝜃(𝑛))). Here 𝜆(𝑛) is a short hand for 𝜆(𝜃(𝑛)) and likewise for 𝜇(𝑛)

𝑘 𝑘 𝑘
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and 𝜙(𝑛)
𝑘𝑙𝑗 . We now define a tight upper bound function of (𝜃) by 

𝑄(𝜃 ∣ 𝜃(𝑛)) = −
𝐾
∑

𝑘=1
𝑄𝑘(𝜃 ∣ 𝜃(𝑛))𝛥𝑁𝑘 +

𝐾
∑

𝑘=1
𝜆𝑘. (3.5)

We obtain the update equations by setting the derivative of 𝑄 to zero 
to yield 

𝜇(𝑛+1) = 1
𝐾

𝐾
∑

𝑘=1

𝜇(𝑛)

𝜆(𝑛)𝑘

𝛥𝑁𝑘,
(

𝛼𝑗
)(𝑛+1) =

∑𝐾
𝑘=1

∑𝑘−1
𝑙=0

𝜙(𝑛)𝑘𝑙𝑗

𝜆(𝑛)𝑘
𝛥𝑁𝑘

(1 + 𝛾) 𝑗 + 𝛥𝑁 𝑗
𝐾−1

, (3.6)

where  𝑗 = 𝛥𝑁 𝑗
1 + ⋯ + 𝛥𝑁 𝑗

𝐾−2. Note that we make a second-order 
approximation of small 𝛾𝑛 so that 𝛾𝑛 ≈ 0 for 𝑛 ≥ 2 in order to obtain 
the update equation of (𝛼𝑗)(𝑛+1). Notice that the update equations for 
each parameter are decoupled, so this step can be computed in parallel.

In general, we can also derive MM algorithm that allows the decay 
rate to be dependent for every node pair. In other words, the parameter 
vector for the 𝑖th node is given by 𝜃 =

(

𝜇𝑖, 𝛼𝑖1,… , 𝛼𝑖𝑚, 𝛾 𝑖1,… , 𝛾 𝑖𝑚
)

. 
Again, we will omit the superscript 𝑖 in the algorithm below because 
of independence of parameters between nodes. Hence, we will write 
𝜃 =

(

𝜇, 𝛼1,… , 𝛼𝑚, 𝛾1,… , 𝛾𝑚
)

. To obtain independent update equations 
for each parameter (similarly to (3.6)), further work is required to deal 
with the second term in (3.6). Through the Arithmetic–Geometric Mean 
inequality, the upper bound function can be obtained by 

𝑄(𝜃 ∣ 𝜃(𝑛)) = −
𝐾
∑

𝑘=0
𝑄𝑘(𝜃 ∣ 𝜃(𝑛))𝛥𝑁𝑘 +𝐾𝜇 +

𝑚
∑

𝑗=1
𝐻 𝑗 𝑗 , (3.7)

where 

𝐻 𝑗 =

(

𝛼𝑗
)(𝑛)

2
(

1 +
(

𝛾𝑗
)(𝑛)

) (1 + 𝛾𝑗 )2 +
2
(

1 +
(

𝛾𝑗
)(𝑛)

)

(

𝛼𝑗
)(𝑛)

(𝛼𝑗 )2. (3.8)

Note that we use a second-order approximation of small 𝛾𝑗 to obtain 
the upper bound function (3.7). By setting the derivative of 𝑄 in (3.7) 
to zero, we obtain the following update equations 

𝜇(𝑛+1) = 1
𝐾

𝐾
∑

𝑘=1

𝜇(𝑛)

𝜆(𝑛)𝑘

𝛥𝑁𝑘,

(

𝛼𝑗
)(𝑛+1) = −𝐵𝑗 +

√

(𝐵𝑗 )2 + 4𝐴𝑗𝐶𝑗

2𝐴𝑗 ,

(

𝛾𝑗
)(𝑛+1) = −𝐷𝑗 +

√

(𝐷𝑗 )2 + 4𝐷𝑗𝐸𝑗

2𝐷𝑗 ,

(3.9)

where 

𝐴𝑗 =  𝑗 1 + (𝛾𝑗 )(𝑛)

(𝛼𝑗 )(𝑛)
, 𝐵𝑗 = 𝛥𝑁 𝑗

𝐾−1, 𝐶𝑗 =
𝑁
∑

𝑘=1

𝑘−1
∑

𝑙=0

𝛥𝑁𝑘𝜙
(𝑛)
𝑘𝑙𝑗

𝜆(𝑛)𝑘

,

𝐷𝑗 =  𝑗 (𝛼𝑗 )(𝑛)

1 + (𝛾𝑗 )(𝑛)
, 𝐸𝑗 =

𝐾
∑

𝑘=1

𝑘−1
∑

𝑙=0
(𝑘 − 𝑙 − 1)

𝛥𝑁𝑘𝜙
(𝑛)
𝑘𝑙𝑗

𝜆(𝑛)𝑘

.

(3.10)

In practice, a regularization scheme may be required to obtain 
useful results. For the system with known decay rate, we apply a 
regularization only to the baseline rate update in (3.6) and keep the 
update equation of the excitation network unchanged. One of the 
simplest ways to do this is to change (3.6) to 

𝜇(𝑛+1) = 1
𝐾 + 𝑏

( 𝐾
∑

𝑘=1

𝜇(𝑛)

𝜆(𝑛)𝑘

𝛥𝑁𝑘 + 𝑎 − 1

)

, (3.11)

for some hyperparameters 𝑎, 𝑏 > 0. This is equivalent to solving the 
Maximum a posterior (MAP) problem with a gamma prior distribution 
of 𝜇 with shape parameter 𝑎 and inverse scale parameter 𝑏. We will 
discuss how we choose hyperparameters 𝑎 and 𝑏 in the synthetic 
experiment in the subsequent section.

Similarly, we may regularize the update equations for both 𝜇 and 
𝛾𝑗 in (3.9) by applying a gamma prior distribution for 𝜇 with the 
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hyperparameters 𝑎 and 𝑏 and a beta prior distribution for each 𝛾𝑗 with 
hyperparameters 𝑐 and 𝑑. Note that for simplicity, we assume the prior 
distribution of all parameters to be independent and use the same value 
of the hyperparameters for all 𝛾𝑗 . The beta distribution is selected to 
constrain 𝛾𝑗 within the desired interval (0, 1). The update equation for 
𝜇(𝑛+1) under this regularization will be the same as (3.11). However, to 
update 𝛾𝑗 , we must solve a quartic polynomial of the following form 

−𝐷𝑗𝑥4 + (𝐷𝑗 + 𝐸𝑗 )𝑥2 + (𝑐 − 𝑑 − 𝐸𝑗 )𝑥 − 𝑎 = 0, (3.12)

where 𝑥 denotes (𝛾𝑗)(𝑛+1) and 𝐸𝑗 and 𝐷𝑗 are defined in (3.10). We can 
either try to solve (3.12) analytically or numerically. In our work, we 
solve this numerically at every iteration.

4. ExPKF for the discrete-time Hawkes model

The MM algorithm in the previous section is designed to estimate 
the model parameters in batch. Alternatively, we can also develop a 
sequential procedure to estimate the parameters. This section presents a 
sequential (second-order) approximation of the posterior density 𝑝(𝜃𝑘 ∣
𝛥𝑁1∶𝑘). In particular, we are interested in approximating only the mean 
and covariance matrix associated with 𝑝(𝜃𝑘 ∣ 𝛥𝑁1∶𝑘). Suppose that we 
have obtained the approximation of the mean and covariance matrix at 
the time step 𝑘 − 1 denoted �̄�𝑘−1 and 𝐏𝑘−1, respectively. Based on this 
approximation, we assume a prediction model to generate a prior mean, 
denoted by �̄�𝑘|𝑘−1, and prior covariance, denoted by 𝐏𝑘|𝑘−1. Following 
the derivation in [50], a second-order approximation of 𝑝(𝜃𝑘 ∣ 𝛥𝑁1∶𝑘)
(called the Extended Poisson–Kalman Filter (ExPKF)) has the following 
mean �̄�𝑘 and covariance update 𝐏𝑘 given by 

𝐏−1
𝑘 = 𝐏−1

𝑘∣𝑘−1 +
𝑚
∑

𝑖=1

[( 𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

)( 𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

)⊤

𝜆𝑖𝑘𝛿𝑡 − (𝛥𝑁 𝑖
𝑘 − 𝜆𝑖𝑘𝛿𝑡)

𝜕2 log 𝜆𝑖𝑘
𝜕2𝜃𝑘

]

,

�̄�𝑘 = �̄�𝑘|𝑘−1 + 𝐏𝑘

𝑚
∑

𝑖=1

[( 𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

)

(𝛥𝑁 𝑖
𝑘 − 𝜆𝑖𝑘𝛿𝑡)

]

,

(4.1)

where the gradient vector 𝜕 log 𝜆
𝑖
𝑘

𝜕𝜃𝑘
 and Hessian matrix 𝜕

2 log 𝜆𝑖𝑘
𝜕2𝜃𝑘

 are both 
evaluated at �̄�𝑘|𝑘−1.

The filtering equation (4.1) can be used to sequentially approximate 
the parameters of the model (3.1). We will assume that 𝛾 𝑖 is fixed for 
a reason that will be explained later; hence there are 𝑚 + 1 unknown 
parameters for each 𝜆𝑖𝑘. To ensure the positivity of the parameters, we 
will estimate the log-transformed parameter instead, 

𝜃𝑖𝑘 ∶= [log𝜇𝑖
𝑘, log 𝛼

𝑖1
𝑘 … , log 𝛼𝑖𝑚𝑘 ]⊤. (4.2)

Therefore, we have 𝜃𝑘 ∈ 𝐑𝑚(𝑚+1). If 𝜃𝑘 is meant to be a static parameter 
vector, it is reasonable to assume the following random-walk model, 
𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘, where 𝜂𝑘 ∼ 𝑁(0,𝐐𝑘). Thus, we have �̄�𝑘|𝑘−1 = �̄�𝑘−1 and 
𝐏𝑘|𝑘−1 = 𝐏𝑘−1 + 𝐐𝑘. Let 𝑆𝑖

𝑘 = 𝛥𝑁 𝑖
𝑘 + 𝛾 𝑖𝛥𝑁 𝑖

𝑘−1 + ⋯ + (𝛾 𝑖)𝑘−1𝛥𝑁 𝑖
0, which 

can be recursively computed by 𝑆𝑖
𝑘+1 = 𝛾 𝑖𝑆 𝑖

𝑘+𝛥𝑁 𝑖
𝑘+1. It can be checked 

that the gradient vector required by (4.1) has the following form 

𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

=

[

𝜕 log 𝜆𝑖𝑘
𝜕𝜃1𝑘

,
𝜕 log 𝜆𝑖𝑘
𝜕𝜃2𝑘

,… ,
𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑚𝑘

]⊤

, (4.3)

where 

𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑖𝑘

=

⎧

⎪

⎨

⎪

⎩

1
𝜆𝑖𝑘

[

𝑒𝜇
𝑖
𝑘 , 𝑆1

𝑘𝑒
𝛼𝑗1𝑘 ,… , 𝑆𝑚

𝑘 𝑒
𝛼𝑗𝑚𝑘

]

, if 𝑖 = 𝑗,

𝟎, if 𝑖 ≠ 𝑗.
(4.4)

Thus, only the 𝑖−th ‘‘block’’ of 𝜕 log 𝜆
𝑖
𝑘

𝜕𝜃𝑘
 is non-zero. Recall, that 𝛾 𝑖 is fixed 

and known. It follows that the Hessian has a simple form, given by 
( 𝜕 log 𝜆𝑖𝑘

)( 𝜕 log 𝜆𝑖𝑘
)⊤

= −
𝜕2 log 𝜆𝑖𝑘 + 𝛬(𝑖), (4.5)
𝜕𝜃𝑘 𝜕𝜃𝑘 𝜕2𝜃𝑘
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where 𝛬(𝑖) is a diagonal matrix with the diagonal vector 𝜕 log 𝜆
𝑖
𝑘

𝜕𝜃𝑘
. Substi-

tuting the above results into (4.1) yields 

𝐏−1
𝑘 = 𝐏−1

𝑘∣𝑘−1 +
𝑚
∑

𝑖=1
𝛥𝑁 𝑖

𝑘

(

𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

)(

𝜕 log 𝜆𝑖𝑘
𝜕𝜃𝑘

)⊤

+
(

𝜆𝑖𝑘𝛿𝑡 − 𝛥𝑁 𝑖
𝑘
)

𝛬(𝑗).

(4.6)

With the form in (4.6), a rank-1 update can be efficiently used to 
compute 𝐏−1

𝑘 . Also, if 𝐏𝑘∣𝑘−1 has a block-diagonal form where each 
block corresponds to the parameters of each node, 𝐏−1

𝑘  will also have 
the same block-diagonal structure where the 𝑖−th block corresponds 
to the parameters of the 𝑖th node. Therefore, by ensuring that 𝐏𝑘∣𝑘−1
has the same block-diagonal structure, 𝐏𝑘 will inherit the same block-
diagonal structure. Consequently, the update system (4.1) can be im-
plemented for each node in parallel. To this end, we will always enforce 
the block-diagonal structure to 𝐏0 and 𝐐𝑘 in all of our numerical 
experiments.

5. Synthetic data tests

5.1. Test experiment

We set up this experiment to generate synthetic test data for three 
different scenarios based on (3.1). The true network has 𝑚 = 9 nodes 
with the following baseline rates: 𝜇1 = 5, 𝜇2 = 4.6, 𝜇3 = 4.2, 𝜇4 =
0.5, 𝜇5 = 0.46, 𝜇6 = 0.42, 𝜇7 = 0.38, 𝜇8 = 0.34, and 𝜇9 = 0.3.

We assume 𝛾 𝑖 ∶= 𝛾 = 0.175 for all nodes. Note that the model (3.1) 
is stable if the magnitude of the largest eigenvalue of 𝛿𝑡(1−𝛾)−1𝐀 is less 
than 1, where 𝐀 is a matrix with 𝛼𝑖𝑗 entries on the 𝑖−th row and 𝑗−th 
column. The value of 𝛾 = 0.175 is selected so that the model (3.1) is 
stable for all three different ground truths of the excitation matrix, 𝐀, 
examined in this experiment. The structures of three different ground 
truths are shown in Fig.  6 representing the different scenarios: only 
self-excitation (top row), localized excitation (middle row), and random 
excitation structure (bottom row). We generate the test data with 𝛿𝑡 = 1
for various data lengths, 𝐾 = 2000, 4000, 8000, 20000. A test data is 
simulated by running the model (3.1) and sampling 𝛥𝑁 𝑖

𝑘 from a Poisson 
distribution with the mean rate 𝜆𝑖𝑘𝛿𝑡 with the initial condition 𝜆𝑖0 = 𝜇𝑖.

The results for MM method with and without regularization are 
shown in Figs.  6 and 7, respectively. For any 𝑖−th node, the hyperpa-
rameter for the regularized MM algorithm is set to 𝑎 = 0.5𝑁 𝑖𝐾, where 
𝑁 𝑖 is the average count of the 𝑖−th node over 𝐾 time steps and 𝑏 = 𝐾. 
This is equivalent to choosing the gamma prior distribution with mean 
0.5𝑁 𝑖 (half of the total count for the given node) and variance 0.5𝑁 𝑖∕𝐾. 
Although the selection of these prior parameter values may be arbitrary 
in general, we based our choice of the prior mean on the reasoning 
that the baseline rate should be lower than the data average due to 
the creation of certain events by excitation. In addition, the variance is 
sufficiently small to ensure that the prior information, or regularization, 
is not dominated by the sample size. We also set 𝑐 = 2.5𝐾 and 𝑑 =
10.25𝐾 for the beta prior distribution, which gives the mean 1∕6 and 
variance in the order of 𝑜(1∕𝐾). We make this selection to prolong the 
impact of excitation by avoiding a decay rate that is too close to 1. 
This selection is again arbitrary. For the remainder of our work, we will 
utilize this approach to select prior information for the MM algorithm. 
Our results, as demonstrated in Figs.  6 and 7, clearly illustrate that 
the use of regularization enables the algorithm to produce significantly 
more accurate outcomes that closely approximate the ground truth.

We use the same simulated data to test ExPKF. Recall that we must 
assume a fixed decay rate for ExPKF to achieve efficient algorithms via 
the rank-1 update. We will discuss this issue later in this section. We set 
𝐏0 = 10−4𝐈 and 𝐐𝑘 = 10−5𝐈 for all 𝑘 = 1,… , 𝐾. The initial guess of the 
𝜇𝑗 is set to be half of the data average of the 𝑗−th node. Fig.  8 illustrates 
that the ExPKF algorithm can achieve accuracy comparable to that of 
the MM algorithm with regularization in capturing network structures. 
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However, ExPKF requires a known decay rate value for all nodes, which 
was used in this experiment. In practice, decay rates may vary and 
be unknown for different nodes. To overcome this issue, we explore 
a method to identify the optimal decay rate 𝛾 𝑖, assuming a uniform 
decay rate for all nodes. Specifically, we perform a one-dimensional 
maximization based on the average log predictive probability (2.1). To 
calculate the average log predictive probability, we use the parameter 
estimate obtained from the previous time step (�̄�𝑘−1) and evaluate (2.1) 
at time step 𝑘, averaging over all time steps. Fig.  9 demonstrates that 
maximizing the predictive probability yields the optimal decay rate.

Moreover, the network structure appears to be highly robust to 
parameter misspecification, as shown in Fig.  10 for the ground truth 
3 scenario. Despite the presence of spurious links caused by incorrect 
decay rates, the primary network structure closely resembles the true 
structure. Similar results are observed for the other ground truths, 
although they are not presented in this study.

5.2. Estimation under model misspecification

In this experiment, we will generate test data from an agent-based 
model (ABM) on a set of nodes featuring an excitation network struc-
ture, which will then be estimated within the Hawkes model; hence, 
a model misspecification problem. We adopt a model inspired by the 
ABM in [6] to simulate the random movement of an ‘‘agent’’ between 
nodes through the network edges. During a time interval (𝑡, 𝑡 + 𝛿𝑡), an 
agent located at a node 𝑠 creates a number of ‘‘events’’ independently, 
following a Poisson probability with mean 𝐴𝑠(𝑡)𝛿𝑡. The total number of 
events generated at 𝑠 during (𝑡, 𝑡+ 𝛿𝑡) is denoted by 𝐸𝑠(𝑡). The discrete-
time dynamic of 𝐴𝑠(𝑡) is given by 𝐴𝑠(𝑡) = 𝐴0

𝑠+𝐵𝑠(𝑡), where 𝐴0
𝑠 is a static, 

node-dependent baseline rate, and 𝐵𝑠(𝑡) is a dynamic component that 
follows the rule: 

𝐵𝑠(𝑡 + 𝛿𝑡) =

[

(1 − 𝜂𝑠)𝐵𝑠(𝑡) + 𝜂𝑠
∑

𝑠′∼𝑠
𝐵𝑠′ (𝑡)

]

(1 − 𝜔𝑠𝛿𝑡) +
∑

𝑠′∼𝑠
𝑤(𝑠, 𝑠′)𝐸𝑠′ (𝑡).

(5.1)

The interpretation of these parameters is listed below:

• 0 < 𝜔𝑠 < 1 is the node-dependent decay rate;
• 0 < 𝜂𝑠 < 1 is the node-dependent diffusion rate;
• 𝑤(𝑠, 𝑠′) ≥ 0 defines the strength of the event-driven excitation 
rate that the node 𝑠′ has on the node 𝑠 and we write 𝑠′ ∼ 𝑠 if 
𝑤(𝑠, 𝑠′) > 0.

If an agent generates one or more events, the agent will be removed 
from the simulation. Otherwise, the agent will move from a node 𝑠 to 
𝑠′′ such that 𝑤(𝑠, 𝑠′′) > 0 based on a discrete probability distribution 

𝑞(𝑠, 𝑠′′; 𝑡) ∶=
𝐴𝑠′′ (𝑡)

∑

𝑠′∼𝑠 𝐴𝑠′ (𝑡)
. (5.2)

Prior to a simulation of the next time step, new agents will be inde-
pendently created for each node according to a Poisson distribution 
with mean 𝛤𝑠𝛿𝑡 where 𝛤𝑠 is a fixed parameter. The key difference 
between the Hawkes and ABM models is that the Hawkes model’s 
network structure provides only data-driven excitation, whereas the 
ABM network structure determines the agents’ excitation, diffusion, and 
probabilistic movement of agents.

The focus of this experiment is on the structure of 𝑤(𝑠, 𝑠′). To this 
end, we define an ‘‘influence’’ matrix 𝑾  such that its 𝑠−th row and 
𝑠′−th column entry is 𝑤(𝑠, 𝑠′), and reconstruct the pattern of non-zero 
elements of 𝑾  using the ExPKF and MM methods. It is important to 
note that no ground truth is available for this experiment. Although 
the dynamics of the ABM exhibit similarities to the Hawkes process in 
terms of influence effects, diffusion effects are also present in the ABM 
but absent from the Hawkes process. Nevertheless, we anticipate that 
the influence structure of the Hawkes model will be akin to that of the 
ABM when fitting the Hawkes model with ABM-simulated count data.



N. Santitissadeekorn et al.

Fig. 6. The estimated network structure obtained from the MM algorithm without regularization for three different ground truths. The length of the data is varied to demonstrate 
the convergence to the ground truth.

Fig. 7. The estimated network structure obtained from the MM algorithm with regularization for three different ground truths. The length of the data is varied to demonstrate 
the convergence to the ground truth.
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Fig. 8. The estimated network structure obtained from the ExPKF algorithm using a true decay rate. The length of the data is varied to demonstrate the convergence to the ground 
truth.
Fig. 9. Comparing the predictive log likelihood for various values of decay rate, 𝛾. The vertical line indicates the true value of the decay rate. The data with length of 20000 is 
used to produce this result.
Fig. 10. Comparing the network structure for the ground truth 3 when the value of decay rate, 𝛾, is incorrectly specified.
We generated data of various lengths based on the same influence 
matrix pattern, represented by 𝑾  with 64 nodes, as illustrated in Fig. 
11. The influence structure is sparse and irreducible, and we considered 
10 
two cases. In Case 1, we set all non-zero influences to 𝑤(𝑠, 𝑠′) = 3 for 
𝑠, 𝑠′ ∈ 1,… , 64, with 𝐵𝑠(0) = 0 for all 𝑠 and 𝛿𝑡 = 0.05. Other static 
parameters were spatially uniform: 𝜔𝑠 = 5, 𝜂𝑠 = 0.25, and 𝛤𝑠 = 3, for all 
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Fig. 11. Data simulated from ABM model. The left most plot illustrates the influence matrix 𝑾 . The second plot from the left shows the cumulative number of events for all 
nodes. The third plot is the frequency distribution of the count. The right most plot is the sample covariance matrix.
𝑠. Additional information on the simulated data for Case 1 is provided 
in Fig.  11. The cumulative counts of the data can be grouped into three 
distinct categories based on the unique values of the row sums of 𝑾 . 
Most time intervals exhibit either no events or a single event, and the 
sample covariance of the count time-series indicates little correlation 
among the nodes.

We use the simulated data to test ExPKF and MM. For ExPKF, 
we set 𝐐𝑘 = 10−5𝐈 for all 𝑘 and 𝐏0 = 10−4𝐈 for all nodes. Again, 
we set the initial value 𝜃0 in the same manner as done with the 
previous experiment in Section 5.1. Fig.  12 shows the estimated 𝑾
based on ExPKF and MM. Interestingly, both methods can correctly 
reconstruct the pattern of the influence matrix 𝑾  despite the model 
misspecification. The results improve with longer data series. Notably, 
ExPKF produces a result with less ‘‘noise’’ in the part that is supposed 
to have zero influence.

We also examine Case 2 where we change the non-zero influences to 
𝑤(𝑠, 𝑠′) = 0.5, 𝜂𝑠 = 1, 𝛤𝑠 = 0.5, keeping all the other parameter values the 
same. While the network pattern in Case 1 is manifested mostly through 
the excitation process (i.e. larger values of 𝑤(𝑠, 𝑠′) and smaller values 
of 𝜂𝑠 and 𝛤𝑠), the Case 2 has a weak excitation and generation rate 
of the new agents but increased diffusion. This change would make it 
more difficult to detect the influence pattern. Nonetheless, the network 
structure can still be detected as displayed in Fig.  13. However, the data 
length required to achieve a good result has to be longer than that of 
the Case 1; note that the average number of counts per time step is 0.15 
for Case 1 but only 0.025 for Case 2.

The errors based on the Frobenius norm and the Hellinger distance 
for different data lengths are analysed in Fig.  14. When computing 
both error measures, we normalize 𝑾  so that the sum of all elements 
is 1. This is necessary since we have no numerical ground truth to 
compare against and should evaluate the error based only on the 
network structure. Both error measures suggest a small improvement 
of the ExPKF results, which is consistent with the visualization of Fig. 
12.

6. Email network data

6.1. Small email network

In this section, we analyse the Ikenet dataset consisting of log files 
from email transactions between 22 anonymized officers at West Point 
Military Academy over a one-year period, which is available to down-
load via https://github.com/naratips/Ikenet.git. The dataset contains 
the time-stamps of outgoing emails and their corresponding receivers. 
Table  1 displays the top 9 sender–receiver pairs in the dataset, ranked 
by the number of out-going emails. The data clearly highlights the 
overwhelmingly large amount of mutual email correspondence for the 
pairs (9, 18) and (11, 22). Previous studies on this dataset have utilized 
information about both the sender and recipients of emails [15,51]. 
The Hawkes model with the exponential decay rate was used in [51] 
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Table 1
Top 9 sender–receiver for the Ikenet data ranked by the total number of outgoing 
emails.
 sender 18 9 22 11 15 8 18 13 18  
 receiver 9 18 11 22 13 18 8 17 22  
 % of total 6.95 5.97 3.97 3.01 1.96 1.89 1.87 1.78 1.75 

where the rate of sending out an email for a given node is driven by 
the events of emails received by the given node. For our experiment, we 
will focus solely on information about the outgoing emails. Therefore, 
the ‘‘influence’’ in our analysis can be interpreted as the effect of the 
number of emails sent out by other nodes on the rate of sending out 
emails (without any knowledge of the recipients). To demonstrate the 
methods in terms of count data, we aggregated the timestamp data 
of outgoing emails into a time-series of count data with a uniform 
temporal interval of 𝑑𝑡 = 0.1 days. Fig.  15 shows the total number of 
counts for each node and the proportion of non-zero counts per time 
step. Note that despite having the number of outgoing emails as large 
as node 18, node 13 is not among the top pairs (9, 18) and (11, 22).

As shown in Fig.  16, networks constructed by MM and ExPKF are 
very similar. By comparing the dominant connections in the network 
with Table  1, we can see that the influence network highlights the top 
sender–receiver pairs (9, 18) and (11, 22) even though no knowledge of 
the email recipient network is used in the experiment.

6.2. Large email network

In this section, we carry out an experiment on a real-world
(anonymized) email timestamp data similar to the previous section but 
at a much larger size. The original data can be found from the follow-
ing link: https://snap.stanford.edu/data/email-Eu-core-temporal.html. 
However, we focus only on the outgoing emails and we ‘‘cleaned up’’ 
the data by removing a continuous period of extremely low count due 
to missing data, weekends and holidays. The cleaned-up data has 545 
‘‘nodes’’ and 61821 intervals (each interval is one hour long) in total 
with approximately 97% of zero counts, 2% of one count per interval 
and the rest of the data has more than one count. Fig.  17 shows the top 
50 nodes with the highest number of emails sent and the cumulative 
count for all nodes.

We test only ExPKF for this experiment since it requires less com-
puter memory and runs faster than MM on our computational re-
sources. We set the initial values 𝛼𝑖𝑗 = 0.1 and initialize 𝜇𝑖 by the 
average count on the 𝑖−th node. We set the decay rate 𝛽 = 0.15 for all 
nodes; we tested a few other values, and the results are qualitatively the 
same. We present the estimated influence network in Fig.  18. It is clear 
that the network is extremely sparse. We can identify only 5 edges that 
would suggest a strong influence. Although the number of emails sent 
by node 308 is close to the median value, we can identify its relatively 

https://github.com/naratips/Ikenet.git
https://snap.stanford.edu/data/email-Eu-core-temporal.html
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Fig. 12. MM and ExPKF estimation of the influence matrix using different data length for Case 1, which has a strong excitation effects.

Fig. 13. MM and ExPKF estimation of the influence matrix using different data length for Case 2, which has a weak excitation effect but strong diffusion.

Fig. 14. MM and ExPKF Error for different data lengths. (Left) Frobenius norm. (Right) Hellinger distance. Two cases are presented: Case 1 (plotted with the circle markers) 
corresponds to Fig.  12 and Case 2 (plotted with the square markers) corresponds to Fig.  13.
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Fig. 15. The total count of emails sent by each node (Left) and proportion of non-zero counts (Right).
Fig. 16. Influence networks associated with the 22-node Ikenet email data constructed by MM algorithm (Left) and ExPKF algorithm (Right).
Fig. 17. (Left) Histogram of the top 50 users by number of emails sent. The black bar is associated with node 308, which is identified by ExPKF as the most influential node. 
(Right) The cumulative counts of all nodes. The node 308 has the cumulative counts shown in a black solid curve. The cumulative counts of the nodes influenced by node 308 
are plotted in the black dash curves.
higher influence on a few other nodes, all of which have a low number 
of sent-out emails.

7. Conclusion

This work presents a significant development in foundations and 
methods for reconstructing influence networks from a time-series of 
count data through parameter estimation of discrete-time, multivariate 
Hawkes or Cox processes. Developing methods for inference for count 
data is important as it is very common in applications when timestamp 
data is not available or does not make sense to collect, e.g. in epidemi-
ology applications, but this area is significantly less developed than for 
timestamp data where, to the best of the authors’ knowledge, there 
were previously no methods for dealing with count data. Despite count 
data having less information than the time-stamp data, we find that 
network reconstruction is still possible. We demonstrate an applica-
tion of the ensemble-based EM algorithm for certain doubly-stochastic 
processes (such as Log-Gaussian Cox process) that can be presented in 
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state–space form. Our implementation is based on the forward filtering-
backward smoothing procedure using the bootstrap particle filter for 
the forward filtering, which is followed by backward smoothing sim-
ulation. We demonstrated the that the Ensemble-EM method is able 
to carry out the network reconstruction through synthetic experiments 
with known ground truths for small networks.

We observe that the parameter settings in our synthetic experiments 
are carefully adjusted to ensure bounded intensity. When the intensity 
grows unbounded, network recovery becomes infeasible within our 
experimental framework. This challenge translates to practical scenar-
ios where intensity values become excessively large. A similar issue is 
discussed in [22,39], where the process eigenvalue approaches 1. It is 
evident that further research advancements are necessary to address 
this limitation effectively.

This paper lays the foundations for other smoothing methods that 
could be used instead of the forward-filtering-backward smoothing 
approach for the ensemble-based EM depending on the structure of 
the state model and the observational likelihood. For example, it was 
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Fig. 18. (Left) Histogram of the edge weights, i.e., 𝛼𝑖𝑗 for the large email network. (Right) The subnetwork with the edges weight above 0.15.
demonstrated in [52] that it is possible to bypass entirely the backward 
smoothing to compute expectations in the setting of an online EM 
method. This would significantly reduce the memory storage require-
ments for the backward smoothing simulation and allow for larger 
networks to be handled. Future work will look at the development of 
the ensemble-based approximate filtering using similar concepts from 
the ensemble-based Kalman smoother (EnKS) developed in geophysical 
applications [53]. The EnKS uses the ensemble to approximate the den-
sity of the one-step push-forward state. This ensemble is then updated 
to fit the observation problem under the approximately linear model 
and Gaussian observational noise. In the current context, however, the 
observation equation can be nonlinear in the parameters and may not 
be close to Gaussian for a time-series with small counts. Further study 
in this direction to improve the E-step of the ensemble-based EM will 
open up applications to the influence network reconstruction problem 
with more complicated state–space models.

We then presented the MM-based algorithm and the ExPKF algo-
rithm to handle real-world applications when the linear Hawkes model 
is a reasonable assumption. The MM algorithm is designed to handle 
large batch data. We select a tight upper bound so that each parameter 
can be updated separately in a parallel manner. The ExPKF algorithm is 
a sequential approach that assumes a known decay rate for the Hawkes 
model. This key assumption enables the rank-1 update in the algorithm 
to avoid the costly inversion of a large matrix and by estimating 
each node independently, our algorithm can be efficiently parallelized. 
Investigation of the ExPKF on synthetic data again showed excellent 
results in determining the hidden network structure.

We demonstrated the performance of the methods using numerical 
experiments with known ground truths for both perfect and imperfect 
model scenarios, and both ExPKF and MM algorithms can recover the 
influence network structure when compared with the ground truth with 
good estimates of the strengths of the connections in the network. 
Several exciting areas for future research include looking at when the 
ExPKF algorithm becomes expensive for general Hawkes models where 
the inversion of the Hessian term in ExPKF cannot be performed via 
a rank-1 update; hence it can become a numerical issue for large-scale 
problems. For MM algorithms, a tight upper bound must be specifically 
designed for a given model. Therefore, for more general models, finding 
a tight upper bound allowing for parallel update of parameters is an 
interesting area to investigate. One thing this work opens up is the 
possibility of network reconstruction for applications in social networks 
and neural networks that hitherto remained out of reach with current 
methods.
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Appendix A. Forward filtering-backward smoothing

We provide a brief review of the particle filtering (PF) and back-
ward smoothing simulation (BSS) used to generate smoothed par-
ticles required to evaluate the surrogate function in (2.9) for the 
ensemble-based EM algorithm.

Particle Filter (PF): Let 𝐱𝑓 (𝓁)𝑘  and 𝑤𝑓 (𝓁)
𝑘  denote, respectively, the 𝓁-

th (filtered) particle and its corresponding normalized weight at time 
step 𝑘 = 0, 1,… , 𝐾, where 𝐾 is the length of the time-series of count 
data.

1. Initialization: Randomly generate 𝑁𝑓  particles from an initial 
distribution 𝐱𝑓 (𝓁)0 ∼ 𝑝

(

𝐱0
) and set initial weights: 𝑤𝑓 (𝓁)

0 = 1∕𝑁𝑓
for 𝑖 = 1,… , 𝑁𝑓 .

2. Repeat this step for 𝑘 = 1,… , 𝐾,

(a) Draw random samples from the conditional predictive 
distribution, denoted by 𝐱(𝓁)𝑘  based on (2.4), i.e., 𝐱(𝓁)𝑘 ∼
𝑁(𝐱(𝓁)𝑘 ;𝛹

(

𝐱𝑓 (𝓁)𝑘−1

)

,𝐐), and then generate the predictive 
conditional intensity 𝜆𝑗,(𝓁)𝑘  for all nodes 𝑗 = 1,… , 𝑚 based 
on (2.5)

(b) Update (unnormalized) weights based on the likelihood 
model

�̃�𝑓 (𝓁)
𝑘 ∝ 𝑤𝑓 (𝓁)

𝑘−1

𝑚
∏

𝑗=1
(𝜆𝑗,(𝓁)𝑘 )𝛥𝑁

𝑖
𝑘 exp(−𝜆𝑗,(𝓁)𝑘 𝛿𝑡).

and then normalize the weight by 𝑤𝑓 (𝓁)
𝑘 ∶= 𝑤𝑓 (𝓁)

𝑘
(

∑𝑁 �̃�𝑓 (𝓁)
)−1

.
𝓁=1 𝑘
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(c) Perform resampling to add additional Monte Carlo vari-
ation when the effective sample size is low. We use the 
criteria below:

𝑁𝑒𝑓𝑓 ∶=
⎛

⎜

⎜

⎝

𝑁𝑓
∑

𝓁=1

(

𝑤(𝓁)
𝑘

)2⎞
⎟

⎟

⎠

−1

< 0.5𝑁𝑓 .

There are a number of methods for resampling. For sim-
plicity, we use the systematic sampling algorithm de-
scribed in [45], which costs 𝑂(𝑁𝑓 ). At the end of this step, 
we obtain 𝐱𝑓 (𝓁)𝑘  and 𝑤𝑓 (𝓁)

𝑘 .

Backward Smoothing Simulation (BSS):
Let 𝐱𝑠(𝓁)𝑘  denote the particle of the 𝓁-th smoothing path at time step 

𝑘 = 0, 1,… , 𝐾.

1. Initialization: Suppose 𝐱𝑓 (𝓁)0∶𝐾  and 𝑤𝑓 (𝓁)
0∶𝐾 , for 𝑖 = 1,… , 𝑁𝑓 , have 

been computed from (and stored during) the filtering process. 
Select 𝐱𝑠(𝓁)𝐾 = 𝐱𝑓 (𝓁)𝐾  with probability 𝑤𝑓 (𝓁)

𝐾 .
2. Repeat this step (backward in time) for 𝑘 = 𝐾 − 1,… , 0,

(a) For 𝓁 = 1,… , 𝑁𝑓 , calculate new weights according 
to (2.4)
𝑤𝑠(𝓁)

𝑘 ∝ 𝑤𝑓 (𝓁)
𝑘 𝑝

(

𝐱𝑠(𝓁)𝑘+1 ∣ 𝐱𝑓 (𝓁)𝑘

)

= 𝑤𝑓 (𝓁)
𝑘 𝑁

(

𝐱𝑓 (𝓁)𝑘 ; 𝐱𝑠(𝓁)𝑘+1 ,𝐐
)

(b) Randomly select 𝐱𝑠(𝓁)𝑘 = 𝐱𝑓 (𝓁)𝑘  with probability 𝑤𝑠(𝓁)
𝑘 . 

Repeat Step 1 and Step 2 𝑁𝑆 times, where 𝑁𝑠 is the 
desired number of smoothing trajectories.

The smoothing trajectories, 𝐱𝑠(𝓁)0∶𝐾 for 𝓁 = 1,… , 𝑁𝑠 will then be used to 
estimate the parameters in the M-step of the EM algorithm, see again 
(2.9).

Appendix B. Maximization of 𝒙 in (2.11)

By neglecting 0 in (2.11), we can find 𝜇(𝜅+1)
1 , 𝜔(𝜅+1)

1  and 𝜖(𝜅+1) by 
maximizing 𝑥 only. Let 𝛽 = (1 − 𝜔1𝛿𝑡) and 𝛾 = 𝜔1𝜇. We can rewrite 
𝑥 by

𝑥 = − 1
2𝑁𝑠𝜖2𝛿𝑡

‖𝐲 − 𝐀𝐳‖2 − 1
2
𝐾 log 𝜖,

where 𝐳 = [𝛽, 𝛾]⊤, 𝐲 =
[

𝑥𝑠(1)1 ,… , 𝑥𝑠(𝑁𝑠)
𝐾 ,… , 𝑥𝑠(1)𝐾 ,… , 𝑥𝑠(𝑁𝑠)

𝐾

]⊤
 and

𝐀⊤ =

(

𝑥𝑠(1)0 ⋯ 𝑥𝑠(1)𝐾−1 ⋯ 𝑥𝑠(𝑁𝑠)
0 ⋯ 𝑥𝑠(𝑁𝑠)

𝐾−1

𝛿𝑡 ⋯ 𝛿𝑡 ⋯ 𝛿𝑡 ⋯ 𝛿𝑡

)

.

Thus, maximizing 𝑥 is equivalent to finding 𝐳 to ‘‘solves’’ the problem 
min ‖𝐲−𝐀𝐳‖2, which is nothing but the normal equation if 𝐀⊤𝐀 is full-
rank or other techniques may be required to regularize the solution. 
However, since 𝐳 has to be positive, a quadratic programming should be 
used if unconstrained minimization fails to produce the desired positive 
solution.

After obtaining 𝐳(𝜅+1) = [

𝛽(𝜅+1), 𝛾 (𝜅+1)
]⊤, we can recover 𝜔(𝜅+1)

1 , 𝜇(𝜅+1)

from 𝛽(𝜅+1), 𝛾 (𝜅+1). We also find the maximizing solution of 𝜖 by

𝜖(𝜅+1) = 1
𝑁𝑆𝐾

𝑁𝑠
∑

𝓁=1

𝐾
∑

𝑘=1

(

𝑥𝑠(𝓁)𝑘 − 𝛹𝑥(𝑥
𝑠(𝓁)
𝑘−1)

)2
,

using 𝜔(𝜅+1)
1 , 𝜇(𝜅+1) in 𝛹𝑥 above.

Data availability

Code will be made available at https://github.com/naratips/EM-
MM-ExPKF when accepted.
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