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Abstract We consider an agent-based model of emotional contagion coupled with motion
in one dimension that has recently been studied in the computer science community. The
model involves movement with a speed proportional to a “fear” variable that undergoes
a temporal consensus averaging based on distance to other agents. We study the effect of
Riemann initial data for this problem, leading to shock dynamics that are studied both within
the agent-based model as well as in a continuum limit. We examine the behavior of the
model under distinguished limits as the characteristic contagion interaction distance and
the interaction timescale both approach zero. The limiting behavior is related to a classical
model for pressureless gas dynamics with “sticky” particles. In comparison, we observe
a threshold for the interaction distance vs. interaction timescale that produce qualitatively
different behavior for the system - in one case particle paths do not cross and there is a natural
Eulerian limit involving nonlocal interactions and in the other case particle paths can cross
and one may consider only a kinetic model in the continuum limit.

Keywords Conservation laws · Riemann problem · Contagion model · Traffic flow

1 Introduction

A recent empirical analysis of computational emotional contagion models was studied in
[40], in which various models were compared to video footage of crowd dynamics during
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an evacuation, to determine which of the models most accurately describe the behavior of
the crowd. A model known as ASCRIBE [4], which we will study in detail in this paper, was
observed to be the one most similar to the observed crowd dynamics. This model was subse-
quently used in an agent-based simulation tool (ESCAPES [41]) that incorporates emotional
contagion in an evacuation scenario of the International Terminal at Los Angeles International
Airport (LAX).

Though the ASCRIBE model reproduces actual crowd behavior well, running massive
simulations of individual interacting agents can be computationally expensive and does not
directly provide a theoretical understanding of the dynamic range and limits of the model. We
present here an analysis of a contagion-movement model based on ASCRIBE, that provides
insight into how the system behaves with very large numbers of particles, by taking a contin-
uum limit of the agent-based model and examining what the ensuing issues are. This work has
direct mathematical connection to related problems including traffic flow [3,21,25], swarm-
ing models [13,23,38,39,42], economics and social sciences [11,17,24], and pressureless
gas models [6,7,26,28,30,37,43]. For simplicity, and to focus on a specific problem that
captures some of the most interesting dynamics in one dimension, we focus on the Riemann
problem and shock formation.

1.1 Discrete Contagion Models

The ASCRIBE model introduced in [4] involves moving, interacting agents, each of whom
possesses an emotional variable qi (t), typically interpreted to represent fear or panic. The
simplest form of the movement rule for these agents involves a speed proportional to the
emotion level, so that the position xi (t) of agent i evolves according to ẋi ∝ qi . The emo-
tion qi , meanwhile, undergoes a form of contagion, so that qi equilibrates according to the
consensus model

q̇i = γ (q∗
i − qi ), q∗

i =

∑

j∈Gi

wi j q j

∑

j∈Gi

wi j
. (1)

Here, γ is an equilibration rate and Gi denotes the set of agents j that interacts with agent i
with weightswi j , so that q∗

i denotes a weighted average of emotion across this set. The weights
could correspond to a straight average (wi j constant) or depend on some environmental
variable such as distance between agents. We note that the basic contagion model is a variant
of a classical consensus model in control theory for which there is an extensive literature
[14,18,22,34].

The weights w in the full ASCRIBE model depend on five parameters for every pairwise
interaction, based on the theory from [2]. These involve the level of sender’s emotion q j ,
level of receiver’s emotion qi , sender’s expressiveness, receiver’s openness, and the channel
strength between the agents. The study [40] compared it with another class of contagion
model, the Durupinar model [19], which, in contrast to the previous one, uses a probabilistic
threshold model based on epidemiological models of disease contagion [16,29,33,36]. In
[40], the authors identified key attributes of appropriate models using real data; namely, a
video of an Amsterdam crowd scene [5] and a video of recent protests in Greece in which
officers fired tear gas into a small crowd [15]. The ASCRIBE model produced a 14% improve-
ment per agent per frame over the Durupinar model in a 15s clip and a 12% improvement in
only a four-second clip.

As with consensus models, there is a strong connection between the contagion model and
swarming models. In particular, when considered in one dimension, the emotion level q has
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the same role as the velocity in swarming models, and Eq. (1) strongly reminds us of the
Cucker-Smale formulation [13,32]. In higher dimension, taking into account the emotion
in addition to the position and velocity allows for a richer description of the behavior of
gregarious groups [1].

1.2 Specific Model Studied in This Paper

To focus on a problem that allows for mathematical analysis and insight into the general
behavior of such models, we consider the following discrete Riemann problem and its con-
tinuum limits. Consider initial data consisting of an infinite number of agents spaced on the
real line at grid points xi = hi (i an integer), where hL and h R are the agent spacing to the
left and right of zero, respectively. Assign qi at time zero to be a value qL for all i ≤ 0 and
qR for all i > 0, with all agents traveling to the right with a speed equal to their q value. The
relevant dynamics occur when qL > qR , in other words, the agents with higher fear level try
to push through the ones with a lower value. Each agent attempts to equilibrate his emotional
level equally with any other agent within a distance R of himself. The dynamic equations for
the emotion variable are then

q̇i = γ (q∗
i − qi ), q∗

i = 1

Ni

∑

j,|x j −xi |<R

q j , ẋi = qi , (2)

where Ni is the number of j’s such that |x j − xi | < R, including i .
Although this is a simple model problem, it captures the kind of dynamics of interest,

in which scared individuals are trying to push through others that are less scared in front
of them. It also captures the basic contagion interactions from the ASCRIBE model with
a fixed interaction radius. We can now study the behavior of this system as γ and R vary,
and perform an analysis of the continuum limits in different settings. Later, we will also
consider different interaction weights wi j , and the interaction kernels that arise from them
in the continuum limit.

1.3 Goals and Organization

The remainder of this paper is organized as follows. Section 2 is dedicated to the microscopic
description of the problem (2). We study in detail the conditions under which individual agents
will maintain order, even if getting dangerously close to each other, or when this order will
be broken. In Sect. 3, we consider the macroscopic limit. We start by considering the limiting
case as the interaction radius R tends to zero and the equilibration rate γ tends to infinity
in the particle setting and the corresponding singular shock formation in the macroscopic
framework. Then we study the general case with finite equilibration rate and a more general
interaction kernel. We again find conditions under which solutions will either remain bounded
for all finite time or blow up in finite time. This framework is accurate while the characteristics
of the equation do not intersect. When the characteristics do intersect, a kinetic approach is
necessary; this is introduced in Sect. 4.

2 Microscopic Description

In this section we want to study the qualitative behavior of a system of N agents whose
dynamics is described by (1). First, we consider the case of only two interacting “particles”
in the context of (2). Here, we use the term “particle” to refer to groups of n ≥ 1 agents that
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share the same position and velocity. Particles in each group are expected to stay together
with respect to the small perturbations in position and velocity because of the averaging
mechanism in the interaction (2). In this setting, we can easily compute the exact solution
and, specifically, determine whether the particle paths will cross, as is stated in the following
Theorem:

Theorem 1 Let p1 and p2 be two particles located at positions x1(0) and x1(0)+d(0), with
velocities q1(0) and q2(0) and containing n1 and n2 agents, respectively, and d(0) ≤ R. Then
their paths will cross if and only if q1(0) − q2(0) > γ d(0). Furthermore, if q1(0) − q2(0) >

γ [d(0) + R], their paths will cross and they will eventually cease to interact with each other.
Furthermore, if the particles do cease interacting at some finite time, the speeds of the two
particles after separation will be

q1 = q1(0) − γ n2 [d(0) + R]

n1 + n2
, q2 = q2(0) + γ n1 [d(0) + R]

n1 + n2
. (3)

Proof Without loss of generality we can assume q1(0) > q2(0) ≥ 0. With the particles p1

and p2 interacting only with each other, we have a conserved average fear level q∗:

q∗
1 = q∗

2 = q∗ = n1q1(0) + n2q2(0)

n1 + n2
. (4)

In this situation, the emotion variables are given by:

q1(t) = q∗ + e−γ t (q1(0) − q∗); (5)

q2(t) = q∗ + e−γ t (q2(0) − q∗). (6)

We can then integrate these equations to find position information:

x1(t) = x1(0) +
t∫

0

q1(s)ds

= x1(0) + q∗t + (1 − e−γ t )(q1(0) − q∗)/γ,

x2(t) = x1(0) + d(0) +
t∫

0

q2(s)ds

= x1(0) + d(0) + q∗t + (1 − e−γ t )(q2(0) − q∗)/γ.

Hence, the distance d(t) = x2(t) − x1(t) between the two particles is

d(t) = d(0) − q1(0) − q2(0)

γ

(
1 − e−γ t ). (7)

Given (7), we may first ask if the two particles will ever meet, i.e., is there any finite time
at which d(t) = 0? The answer is that the particles will meet only if

q1(0) − q2(0) > d(0)γ ; (8)

that is, they will meet if the difference in speeds is sufficiently large relative to their initial
separation and the equilibration rate. Similarly, we may ask if the two particles will ever stop
interacting, i.e., is there any finite time at which d(t) < −R? The answer is that the particles
will stop interacting only if

q1(0) − q2(0) > [d(0) + R] γ. (9)
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Assuming that the particles stop interacting after a finite time t∗, that we can easily obtain
from Eq. (7), inserting t∗ into Eqs. (5) and (6) will yield the last assertion of the statement.

Theorem 1 illustrates the relevance of the relation between the difference in the emotion
level between two particles �q , and the quantities γ δ(0) and γ R. In the remainder of this
section, let us discuss how this affects the behavior of the system when we consider more
than two particles, in two different regimes.

2.1 Zero Interaction Radius, Infinite Equilibration Rate

In a dense crowd setting, it is reasonable to assume a relatively small interaction radius and
a rather quick equilibration rate. Thus, it is natural to consider the case in which R → 0,
γ → ∞. Let us further suppose, though, that as we approach these limiting values, the
quantity Rγ = C remains fixed, so that we can use the results of Theorem 1, with d(0) = R
(since R → 0, the particles will not interact until they are within distance R of each other
for any non-zero initial spacing d(0)) to determine if two particles may cross paths upon
meeting. Specifically, Theorem 1 tells us that if the greatest difference in emotion between
two particles �q = qL − qR satisfies �q ≤ 2C , particle paths will never cross, while if
�q > 2C , particle paths may cross.

We first examine the case �q ≤ 2C ; here, agents do not interact until they collide, at which
point they average their emotion/speed and stick together, which resembles the modeling of
sticky particles in gas dynamics [6,7,26,28,43,44]. In this case, we can solve the discrete
Riemann problem exactly and the solution is a singular shock. Although this is unphysical–
one would not expect individuals to simultaneously occupy the same position in space – it
serves as a useful class of exact solutions to compare with the small R and large γ problems.
We have the following theorem.

Theorem 2 Consider the system (2) in which R = 0 and agents average their fear and stick
together when they collide. Then the solution satisfies

⎧
⎪⎨

⎪⎩

xi (t) = hLi + qL t for i < (xs(t) − qL t)/hL

xi (t) = h Ri + qRt for i > (xs(t) − qRt)/h R

xi (t) = xs(t) otherwise

(10)

in which hL (respectively h R) is the distance between two consecutive particles on the left side
(respectively the right side) of the shock xs(t), which is the location of the accumulation of

agents that collide from the left and from the right, satisfying ẋs(t) = avgi∈S(qi ) :=
∑

i∈S qi∑
i∈S 1 ,

where S is the set of all indices i such that the particle pi belongs to the singular shock.
Moreover, as t → ∞ we have ẋs → s∗ with

s∗ =
√

ρLqL + √
ρRqR√

ρR + √
ρL

, (11)

where ρL = 1/hL and ρR = 1/h R, are the respective densities of agents on the left and the
right.

The proof of this theorem can be found in the literature, such as [9] and the references
therein, but we add it here for completeness.

Proof A diagram of the solution of the discrete problem is shown in Fig. 1, where one sees
that the agents are independent of each other as long as they do not meet, but once they
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Fig. 1 Description of particle characteristics with zero radius of interaction and infinite reaction time

collide they stick together and form a shock. Therefore, the dynamics are well represented
by (10). The asymptotic shock speed can be computed by noticing that the rate at which
agents enter the shock from the left and from the right are respectively rL = ρL(qL − s∗) and
rR = ρR(s∗ −qR). This gives an asymptotic shock speed of s∗ = (rLqL +rRqR)/(rL +rR).
Combining these equations and solving the quadratic equation for s implies (11).

Now we consider the case when �q > 2C , so that when two particles meet, they may pass
through each other and then continue moving with separate trajectories. For simplicity’s sake,
let us consider here a symmetric initial state with respect to density, so that ρL = ρR = ρ0. In
this case, we switch into a frame of reference moving at the average speed s∗ = (qL +qR)/2,
which, due to symmetry, must be the shock speed. When the first two particles meet, p0

with speed qL and p1 with speed qR , they will certainly pass through each other, so that
p0 will move ahead of the “shock” (that currently contains zero particles) while p1 will fall
behind it. Once passed through the shock, p0 (p1) will have a reduced (increased) speed, as
given in (3), and will continue to encounter particles of speed qR < s∗ (qL > s∗), causing
further reductions (increases) in speed each time, and may even stick to some of the other
particles encountered, given the reduced difference in speed relative to �q . Hence, p0 (p1)
will eventually reach a speed less than (greater than) s∗, and begin moving back toward the
shock. When particles p0 and p1 (each now potentially a group of multiple agents) meet
again, it will be at the location of the shock, due to symmetry, at which time they may pass
through each other again, or may now stick together if the differences in their speeds is now
less than 2C . This same basic behavior is true of all the particles, so that the shock in this
case will consist not only of a large particle moving at speed s∗, as it did in the sticky particle
case above, but will also be surrounded by particles oscillating around the shock and passing
through it, at least at small values of t .

The long-term behavior of the shock with regards to these oscillations can be determined
by asking whether new particles entering the shock with speeds qL or qR are able to pass
through any possible central shock particle moving at speed s∗. This will be the case if
qL − s∗ > 2C , which is equivalent to �q > 4C . Hence, in the case �q > 4C , oscillations
of particles around the shock will continue indefinitely, while in the case 2C < �q ≤ 4C ,
the oscillations will quickly die out, and the long term behavior will be the same as that in
the sticky particle case examined above, with a single massive particle moving at speed s∗
serving as the shock. The indefinite oscillations case is illustrated in Fig. 2. The figure is
constructed from a simulation that employs the analytic solution (3) for the case in which
R → 0 and γ → ∞ with Rγ = 1/30 and d(0) = R (since we are considering the case
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Fig. 2 An example of the indefinite oscillations of particles passing through the central shock that occurs
when �q > 4C . Here, �q = 1 while C = 1/30, and the initial density of particles is 1. The colored lines
correspond to the portions of the trajectories of particles after they have encountered at least one other particle
or the central shock, as observed from a reference frame moving with the shock speed s∗ = 1/2; all other
portions of trajectories are removed to allow for easier viewing of the oscillations (Color figure online)

R → 0), and exactly solves the resulting system as particles collide and potentially pass
through each other.

2.2 Fast Equalization

We now consider the model away from the limit R → 0, γ → ∞, that is, when the interaction
radius is positive and the equilibration rate, albeit possibly large, is bounded, though still in the
regime in which particle paths do not cross. As time advances, the framework we adopted for
the previous discussion will not be valid: a positive radius of interaction will allow for multiple
particles at different locations interacting at the same time, and possibly with different subsets
of particles. Also, now it is possible for particles to equilibrate their levels of fear while still
being at a positive distance from each other, leading us to consider an extended shock region
with high accumulation of particles. A detailed description of the dynamics inside of the
shock region, and in particular to be able to answer the question of whether or not the paths
of any particles in it will eventually cross, requires a thorough analysis of the system of ODEs
associated with the particles in the shock. This is not the goal of this paper, but a heuristic
description of the behavior of this region will give us insight into the expected dynamics and
provide a basis of comparison with the macroscopic formulation presented in the next section.

First, we adopt a framework where the initial distance between particles is larger than the
interaction distance, so all interactions will occur around the shock region. As in Sect. 2.1, for
the sake of simplicity we will assume symmetry with respect to the density in the following
description. We start by considering the specific case when �q = γ R; in this case a sharp
shock moving with velocity equal to the average initial velocities will form and, if the radius
of interaction is small enough, the dynamics will resemble that of the sticky particle, as seen
in Fig. 3.

What happens if γ and R do not satisfy this condition, though? If we vary γ and R in
such a way that �q < γ R, we are in the “swarming” regime where the contagion interaction
happens fast compared to the length scale of the interactions. In this case, the particles emotion
levels equilibrate before their paths can cross and the shock expands as the characteristics
accumulate around the trajectory that would correspond with it, forming a sort of cone. This
is seen in Fig. 4.
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Fig. 3 Shock formation: qL = 1,
qR = 0, γ = 200, R = 0.005.
Simulation done with 200
particles, set at an initial distance
1 from each other. Plot of 1 path
every 10 particles

Fig. 4 Expansion of the shock. From left to right: N = 200, qL = 1, qR = 0, γ = 10, R = 0.1; N = 200,
qL = 1, qR = 0, γ = 200, R = 0.1; N = 1000, qL = 1, qR = 0, γ = 200, R = 0.5. Particles set at an
initial distance 1 from each other. Plot of 1 path every 10

Fig. 5 No sharp boundaries. From left to right: N = 1000, qL = 1, qR = 0, γ = 10, R = 5; N = 1000,
qL = 1, qR = 0, γ = 200, R = 5. Particles set at an initial distance 1 from each other. Plot of 1 path every 10

If, in addition, the interaction radius is large with respect to the starting distance between
the particles, such that more particles interact simultaneously, the boundary of the cone loses
its sharpness, and as the equilibration rate increases, velocities become uniform instantly
(Fig. 5).

Moreover, in this regime, we must take into account that the effect of incoming particles
will alter the relative distances among particles already in the shock region, which may poten-
tially cross. As a consequence of this, the results summarized in Theorem 1 are not sharp any
more. As we will see in the next section in detail, a macroscopic approach allows us to answer
this question, and capture accurately the behavior we see in the microscopic description.

Finally, if we vary γ and R in such a way that �q > γ R, Theorem 1 tells us that particles
will cross. As in the previous section, we are interested in the long time behavior of the
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Fig. 6 Crossing of
characteristics (�q > γ R).
qL = 1, qR = 0, γ = 0.5,
R = 0.1. Simulation done with
200 particles, set at an initial
distance 1 of each other. Plot of 1
path every 10. Observe that,
although 4C = 4γ R = 0.2
<< 1 = �q, incoming particles
do not oscillate indefinitely
around the shock region but
rather they are captured by it

shock, but again the fact that after crossing (maybe several times) particles can equilibrate
at a positive distance from each other affects the asymptotic dynamics of the system. In this
framework, we have to ask ourselves if a new incoming particle will escape all the particles
already in the shock region (which may still be oscillating around the average speed s∗).
Instead of the sharp threshold observed in Sect. 2.1, now this will depend on the width of the
shock region. Figure 6 shows an example of the dynamics of the system in this framework.

3 Macroscopic Description

In this section, we study the dynamics of system (2) when the density of particles approaches
infinity. When particle paths do not cross, we can directly obtain the macroscopic system
without passing through the kinetic description. We first examine the macroscopic equivalent
to the extreme case in Sect. 2.1. In this case, the continuum system is described by the
pressureless Euler equations, while for the general interaction, studied next, we derive the
macroscopic equations following the particle paths and show their correspondence with the
particle model.

3.1 Shock Formation: Zero Interaction Radius and Infinite Equilibration Rate

The discrete solution proposed in Eq. (10) in Sect. 2 has a continuum limit as described by
a 2 × 2 system of conservation law as follows

ρt + (Q)x = 0; Qt + (Q2/ρ)x = 0, (12)

where ρ is the local density of agents and Q is the local fear level weighted by the density of
agents. As already mentioned in Sect. 2, this system arises as a model for sticky particles in gas
dynamics. The solution admits a δ-singularity, and has been analyzed extensively in the litera-
ture since 1994 [6–8,12,26,28,30,31,35,37,43,44]. Below we present a derivation of the sin-
gular shock dynamics that will serve as a base model for the more general nonlocal problem.

Define the local average fear level as q = Q/ρ; from the microscopic dynamics, one sees
that q is bounded from above and below, thus the singularity of system (12) only appears in

ρ and Q, but not q . Therefore, the fluxes Q = ρq and Q2

ρ
= ρq2 are well defined in the

distribution sense. Now, let (x, t) ∈ R×[0,∞), denote U = (ρ, Q)T , F(U ) = (
Q, Q2/ρ

)T
,

and choose an open region V ⊂ R×[0,∞) such that U is smooth on either side of a smooth
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Fig. 7 Open region
V ⊂ R × [0,∞) cut through by a
curve S on which the singularity
happens

curve S. Here S represents the shock trajectory. We look for a measure solution that is classical
on either side of S but may have mass accumulation as well as a jump discontinuity on S.
This is a generalization of standard Rankine-Hugoniot theory [20]. Let Vl and Vr be the part
on the left and right of the curve, respectively (see Fig. 7), and choose a smooth test function
ϕ with compact support in V . Then a weak solution U satisfies

0 =
∫

V

Uϕt + F(U )ϕx dxdt

=
∫

Vl

Uϕt +F(U )ϕx dxdt +
∫

Vr

Uϕt +F(U )ϕx dxdt +
S+∫

S−
Uϕt +F(U )ϕx dxdt

=−
∫

Vl

(Ut + Fx )ϕdxdt +
∫

S−
(U−ν1 + F−ν2)ϕd� −

∫

Vr

(Ut + Fx )ϕdxdt

−
∫

S+
(U+ν1 + F+ν2)ϕd� +

S+∫

S−
U

(

ϕt + dxS(t)

dt
ϕx

)

dxdt

=
t2∫

t1

(
dxS

dt
[U ] − [F(U )]

)

ϕdt +
t2∫

t1

M(t)
dϕ(xS(t), t)

dt
dt

=
t2∫

t1

(
dxS

dt
[U ] − [F(U )] − d M(t)

dt

)

ϕdt, (13)

where we use the fact that along the curve S, the flux satisfies F(u(xS(t), t)) =
dxS(t)

dt u(xS(t), t) by definition. Here S− and S+ represent the left and right limit of the curve S;

� is its length; M =∫ S+
S− Udxdt =∫ t2

t1
dt

∫ xS(t)+
xS(t)− Udx is the singular mass. Therefore, we have

d Mρ(t)

dt
= s∗[ρ] − [Q], d MQ(t)

dt
= s∗[Q] − [Q2/ρ], (14)

where s∗(t) = dxS(t)
dt .
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However, relation (14) is not enough to uniquely define the weak solution for (12) with
Riemann initial data, since s∗ is unknown. Sheng and Zhang in [37] derive this speed by
constructing a delta distribution solution as a vanishing viscosity solution of (12) with a
Dafermos regularization. Cheng et. al revisit it in [12] in the vanishing pressure framework.
Here we derive the shock speed in a very simple way. Notice that the singular mass Mρ(t)
describes the total number of agents accumulated along S, MQ(t) describes the total amount
of fear along S, and the shock speed s∗ represents the average fear level. Thus we have the
constitutive relation

MQ(t) = s∗Mρ(t). (15)

Combining it with (14) immediately leads to (11). This derivation indeed shares the same
spirit as the derivation of Theorem 2 for the agent based model.

3.2 Fast Equalization with Nonlocal Spatial Interactions

In this subsection, we consider the dynamics in Sect. 2.2 in the limit as the particle density
goes to infinity. We work in the regime where particles will adjust their speed to that of their
neighbors quickly enough so as to not cross each other, thus we can derive the limit in a
Lagrange formulation. Consider the flow map X (α, t) such that

d X (α, t)

dt
= q(X (α, t), t), X (α, 0) = α. (16)

Then the changing of fear level q can be written as Dq
Dt = γ (q∗ − q), which, going back

to the Eulerian variable, reads qt + qqx = γ (q∗ − q). Combining this equation with the
conservation of mass, we have a macroscopic model as follows:

ρt + (ρq)x = 0, (17)

qt + qqx = γ (q∗ − q), q∗ = K ∗ (ρq)

K ∗ ρ
, (18)

with Riemann initial data

ρ(x, 0) = ρ0, q(x, 0) =
{

qL , x < 0,

qR, x > 0,
, qL > qR . (19)

We will specify the interaction kernel K later. Compared to (12), this model takes into account
the positive radius of interaction and finite reaction time.

As mentioned in Sect. 3.1, for zero radius of interaction and infinite equilibration rate, a
singular shock will happen in the macroscopic model corresponding to the mass concentration
in the particle model. Then for (17)–(18), will we still see mass concentration? That is, will ρ
stay uniformly bounded for any time T or blow up in finite time? First we have the following
results.

Theorem 3 Consider the system (17)–(18) with initial data ρ(x, 0) = ρ0, ∂x q(x, 0) ≤ 0
and limx→−∞ q(x, 0) = qL , limx→∞ q(x, 0) = qR < qL . Then, if maxx |∂x q(x, 0)| > γ ,
ρ will blow up in finite time.

Proof Let ω = −qx , ω∗ = −(q∗)x and take the derivative in x of (18), we have

ωt + qωx = ω2 + γω∗ − γω. (20)

Now, consider the flow map X (α, t) such that

d X (α, t)

dt
= q(X (α, t), t), X (α, 0) = α.
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Fig. 8 Comparison of simulation of macroscopic model (17)–(18), (22) with ρ0 = 10, qL = 1, qR = 0 and
and particle model (23) with the same initial data for q and 1000 particles in domain [−50,50] at time t = 4.
Here γ = 5, R = 0.1

Then (17) and (20) become

Dρ

Dt
= ρω(X (α, t), t),

Dω

Dt
= ω2 + γω∗ − γω. (21)

Therefore, if maxx |∂x q(x, 0)| = |ω(X (αc, 0), 0)| > γ , Dω
Dt > 0, and thus ω(x, t) is grow-

ing with time, hence ω2 − γω + γω∗ > 0 for any T by noticing that ω∗ stays nonnega-
tive. Moreover, from (21) one sees that Dω

Dt > ω2 − γω, which implies ω(X (αc, t), t) >
γ

1−
(

1− γ
ω(X (αc ,0),0)

)
et

and leads to finite time blow up.

To illustrate this behavior, we choose a smoothed Riemann initial data q(x, 0) =
(1 − tanh(20x)) /2, so that qL = 1 and qR = 0, and let ρ0 = 10, R = 0.1, and γ = 5. The
kernel takes the form

K (x) = 1

x2 + R2

R

π
. (22)

From the above theorem, we expect the crossing of characteristics in this case. To see this,
we solve (17)–(18) numerically using an upwind scheme and compare it with the particle
model

q̇i = γ (q∗
i − qi ), q∗

i =
∑N

j=1 K (
∣
∣x j − xi

∣
∣)q j

∑N
j=1 K (

∣
∣x j − xi

∣
∣)

, ẋi = qi (23)

using the same initial data for q and 1000 particles uniformly distributed in the domain
[−50, 50]. The plots of density ρ and fear q for the macroscopic system at time = 4 are
displayed in Fig. 8 with solid curve. Particles simulation for xi s and qi s are collected via
dashed curve in Fig. 8 on the left, and on the right we plot 1

2 (xi + xi+1) with respect to
1/ |xi+1 − xi | as the density versus position, where crossing is clearly observed. Though
particles have crossed at this time, the plot of q(x, 4) still matches very well between the
particle and continuum versions at the scales illustrated here. This is because the values of
γ and R we chose here are right near the edge for blowing up and particles equilibrate very
quickly after crossing. If we decrease γ , we will more clearly see a multivalued solution
for q in the particle case, resulting in a discrepancy of the two models; we will see this in
more detail in Sect. 4. It is also interesting to point out that even in the presence of particles
crossing, the macroscopic model still captures the correct shock speed.
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Theorem 4 For the system (17)–(18) with initial data ρ(x, 0) = ρ0, ∂x q(x, 0) ≤ 0,
limx→−∞ q(x, 0) = qL , limx→∞ q(x, 0) = qR < qL , assume that there exist a constant C1

such that the kernel satisfies K ′(x) ≤ C1 K (x), then if maxx |∂x q(x, 0)| ≤ γ
2 , γ > 8C1qL ,

then for any time T , we have ρ < C2T with C2 being a constant.

In order to prove Theorem 4, we need the result in the following lemma, regarding the uniform
boundedness of ω∗.

Lemma 1 If the Kernel K ∈ W 2,1 and there is a constant C1 such that K satisfies
∣
∣K ′(x)

∣
∣ ≤

C1 K (x), then ω∗ is uniformly bounded.

Proof From the definition of ω∗, we have

∣
∣ω∗∣∣ =

∣
∣
∣
∣
(K ∗ρx ) (K ∗ ρq)−(K ∗(ρq)x ) (K ∗ρ)

(K ∗ρ)2

∣
∣
∣
∣

=
∣
∣
∣
∣
(Kx ∗ρ) (K ∗ρq) − (Kx ∗(ρq)) (K ∗ρ)

(K ∗ρ)2

∣
∣
∣
∣ ,

where we have used integration by parts since K ∈ W 2,1. Notice that since q < max{qL , qR},
we have

∣
∣ω∗∣∣ ≤ 2 max{qL , qR}

∣
∣
∣
∣

Kx ∗ ρ

K ∗ ρ

∣
∣
∣
∣ ≤ 2C1 max{qL , qR} (24)

Proof of Theorem 4 As in the proof of Theorem 3, we look at equation (21) for ω∗.
Since 4ω∗ � 8C1qL < γ , the polynomial ω2 − γω + γω∗ always has two real roots

R1/2(ω
∗) = 1

2

(
γ ± √

γ 2 − 4γω∗
)

, and 0 ≤ R1(ω
∗) ≤ γ

2 ≤ R2(ω
∗) ≤ γ . Therefore, if

initially R1(ω(α, 0)) < ω(α, 0) <
γ
2 , we will have Dω

Dt < 0. In the same way, if initially
ω(α, 0) < R1(ω(α, 0), 0)), Dω

Dt > 0 and ω increases, but once it surpasses the value of R1(ω)

it decreases again. So in both cases ω will never increase over γ
2 . Then from the expression

for ρ

ρ(X (α, t), t) = ρ(X (α, 0), 0)e
∫ t

0 ω(X (α,τ ),τ )dτ , (25)

we see that for any T > 0, maxα ρ(α, t) < maxα ρ(α, 0)e
γ
2 T . 
�

We also compare the solutions of both particle and macroscopic models under the assump-
tions of Theorem 4 in Fig. 9. Here ρ remains bounded and good agreements are observed.
In fact, for the case in Theorem 4, we see that ω is not only uniformly bounded, but also
decaying to zero with time, as illustrated in Fig. 10, which gives a profile of ω(X (0, t), t)
versus t . As one can see, the decay rate of ω(X (0, t), t) is approximately 1/t , so ρ will have
infinite time blow up.

4 Crossing Characteristics: Kinetic Description

For parameters and initial conditions that lead to particle crossing, the PDE description of (12)
will fail to replicate the behavior of the particles after the crossing time, which corresponds to
the blow-up of the PDEs as discussed in Theorem 3. However, following classical results from
kinetic theory, we could use the BBGKY hierarchy to describe the evolution of the particle
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Fig. 9 Comparison of a simulation of macroscopic model (17)–(18), (22) with ρ0 = 10, qL = 1, qR = 0
and particle model (23) with the same initial data for q and 1000 particles in domain [−50, 50] at time t = 4.
Here γ = 110, R = 0.1.

Fig. 10 Plot of ω(X (0, t), t)
versus time in log scale for
macroscopic model (17)–(18),
(22) with ρ0 = 10, qL = 1,
qR = 0, γ = 110, R = 0.1
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system with a single PDE in multiple dimensions. That is, we can consider the N -particle
distribution in the space/emotion phase space

F N (x1, q1, . . . , xN , qN , t), (xi , qi ) ∈ R × [0, 1] i = 1, . . . , N

and the corresponding Liouville equation. Under the assumption of symmetry and indistin-
guability of the particles, the system can be described by the marginal associated to one of
the particles, say, the first one:

f := f N
1 (t, x, q) :=

∫

R2(N−1)

F N (x1, q1, . . . , xN , qN , t)dx2 . . . dxN dq2 . . . dqN

Integrating the Liouville equation will yield

∂ f

∂t
+ q

∂ f N
1

∂x
= Interaction Term,

where the term on the right hand side of the equation depends on the partial derivatives with
respect to q of f N

1 and the second marginal
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f N
2 (t, x1, x2, q1, q2) :=

∫

R2(N−2)

FN dx3 . . . dxN dq3 . . . dqN .

The evolution of f N
2 would depend on f N

3 , which in turn depends on f N
4 and so on. Never-

theless, in the thermodynamic limit of very large numbers of agents, the chaos assumption
holds, and thus we can approximate f N

2 (t, x1, x2, q1, q2) ∼ f N
1 (t, x1, q1) f N

1 (t, x2, q2) thus
the force term can be simplified, yielding the kinetic equation

∂ f (t, x, q)

∂t
+ q

∂ f (t, x, q)

∂x
= ∂

∂q

[
γ

(
q − q∗(x, t)

)
f (t, x, q)

]
. (26)

Here, f (t, x, q) is the density of agents with fear q at the point x at time t , and q∗(x, t), the
average fear at location x at time t , would be given by

q(x, t) =

∫ ∫

q ′ f (t, x ′, q ′)K (x, x ′)dq ′dx ′
∫ ∫

f (t, x ′, q ′)K (x, x ′)dq ′dx ′
, (27)

where K (x, x ′) is the interaction kernel between the particles at location x and x ′. It should be
noted that this equation is only a valid approximation of a particle system of infinite density,
as was also the case of the PDE model in (12). A detailed derivation for the similar Cucker-
Smale equation for swarming can be found in [10,27], and for the general N -dimensional
case of the contagion model in [1].

Simulations of (26) are compared to the results of the agent-based system and the PDEs

(12) in Fig. 11. Here, we use γ = 0.1, K (x, x ′) = [
1 + (x − x ′)2/R2

]−1
, R = 0.1, a spatial

domain of length L = 160 with 1600 particles, and initial fear distribution

q(x, 0) = 0.5 [1 + tanh(0.25(80 − x))], (28)

which will lead to eventual particle path crossing. There is general agreement between the
particle and kinetic simulations, though the numerical method used to solve the kinetic
equation contains non-negligible numerical diffusion, causing the kinetic solutions to be
smoothed out relative to the agent-based simulation. The PDE model, however, does not
describe the particles well at this point in time, as it insists upon a sharp shock that particles
cannot cross through, while the particles and kinetic equation allow the passage of individuals
through the shock, causing it to be much more spatially extended than the PDE will allow.

5 Summary and Conclusions

In this work, we considered a system of interacting agents that move in one dimension
according to the intensity of some emotion that spreads and equilibrates through the agents,
and studied the dynamics of this system at three different levels: microscopic, macroscopic,
and kinetic.

We provide a thorough description of the behavior of the system at the microscopic level
in terms of the relation between the difference in emotion intensity between two consecutive
agents �q and the quantity C = γ R that characterizes how fast agents equilibrate in relation
to the characteristic length at which the interaction happens. In the regime where γ → ∞
and R → 0 we observe three different regimes: for �q < 2C we recover the classical sticky
particle model; for 2C < �q < 4C particles will initially cross but eventually converge
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Fig. 11 Comparing results of the particle, kinetic, and PDE models after particle crossing has occurred, using
parameters and initial conditions described in the text. (Left) Colorplot of the kinetic distribution f (40, x, q),
with colors ranging from purple at low values to red at high values. Overlayed on the colorplot are the q(x, 40)

values obtained from both the particle model (solid, black) and the PDE model (dashed, white). Both the kinetic
and particle models display a wide shock due to agents passing through each other, while the PDE results
show a very narrow shock. (Right) Plots of the cumulative density distribution N (x) (number of agents with
position y ≤ x) at time t = 40 obtained for particles (solid, black), the kinetic equation (red, short-dashed),
and the PDE system (green, long-dashed). The kinetic and particle models match well even over the shock
region, while the PDE model does not (Color figure online)

on the trajectory of the shock such that new incoming particles will not cross the shock but
adhere to it; and for �q > 4C particles oscillate indefinitely through the shock. For finite
γ and strictly positive R, we observe that if particles do not cross, as we move away from
the limit the shock becomes smoother, and we talk about a shock region with high density of
particles that grows with time. If particles do cross, a shock region will also form but in this
case the effect of a large �q will be an increase in the width of this region, that eventually
will capture any newly approaching particle.

At the macroscopic level, we first recover the continuum version of the sticky parti-
cle model and provide a formula for the asymptotic speed of the shock. Then we use the
Eulerian formulation to derive a continuum equation with the same dynamics as the particle
system when the equilibration rate is finite and the characteristic interaction length is strictly
positive. In this framework we consider more general kernels than the one introduced in the
microscopic description, and we can provide a theory for when the solution will blow up,
corresponding to crossing of characteristics (or particles in the microscopic formulation).
Namely, we see that if |∂x q(x, 0)| > γ then the density ρ will blow up in finite time, while
if maxx |∂x q(x, 0)| ≤ γ

2 , γ > 8C1qL , and for certain classes of kernels, then ρ will remain
bounded. The blow up of the density is of particular interest, since it corresponds in the
model to areas of high risk within a crowd where individuals can be trampled on by their
neighbors. Understanding the behavior of the system in the regime γ

2 < |∂x q| < γ is still an
open question.

Finally, we formally derive a kinetic equation that provides a continuous description of
the particle model when the characteristics of the PDE cross, so that the PDE model does not
capture the dynamics of the particle system accurately. We show a numerical example of how,
with the kinetic description, we can again recover the behavior observed at the microscopic
level.
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