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In this paper, we develop two efficient numerical methods for a multiscale kinetic equa-
tion in the context of crowd dynamics with emotional contagion [A. Bertozzi, J. Rosado,
M. Short and L. Wang, Contagion shocks in one dimension, J. Stat. Phys. 158 (2014)
647-664]. In the continuum limit, the mesoscopic kinetic equation produces a natural
Eulerian limit with nonlocal interactions. However, such limit ceases to be valid when
the underlying microscopic particle characteristics cross, corresponding to the blow up
of the solution in the Eulerian system. One method is to couple these two situations —
using Eulerian dynamics for regions without characteristic crossing and kinetic evolution
for regions with characteristic crossing. For such a hybrid setting, we provide a regime
indicator based on the macroscopic density and fear level, and propose an interface
condition via continuity to connect these two regimes. The other method is based on
a level set formulation for the continuum system. The level set equation shares similar
forms as the kinetic equation, and it successfully captures the multi-valued solution in
velocity, which implies that the multi-valued solution other than the viscosity solution
should be the physically relevant ones for the continuum system. Numerical examples
are presented to show the efficiency of these new methods.
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1. Introduction

Multiscale phenomena find applications in a broad range of scientific problems
such as gases out of thermodynamic equilibrium, turbulence in fluids, and radiative
transfer with variational collision rate. In most of these situations, the majority of
the domain can be characterized by the macroscopic model, except in some small
regions where microscopic effects are important such as near the boundaries or shock
layers. Moreover, the macroscopic model gives the most efficient description, as it
resides in physical space and requires the lowest computational cost; compare this
to the mesoscopic kinetic model that resides in phase space, and the microscopic
model that records the evolution of each individual. Therefore, it is desirable to
use the macroscopic model whenever possible, and to restrict the use of the kinetic
model to only those locations where it is necessary.

To this aim, domain decomposition technology has been widely explored, espe-
cially in the context of neutron transport with a macroscopic diffusion limit,2?-28:3:53
the Boltzmann equation with an Eulerian or Navier-Stokes limit,'1493% and the
hyperbolic relaxation system with multiple relaxation times.3”1* At the same time,
a hybrid scheme has gained popularity in multiscale kinetic equations as well for
its automatic detection of different regimes; consult Refs. 24, 20, 21 and 27 for a
recent extension to better regime indicator and higher-order coupling.

One particular domain in which both continuum and kinetic models are often
employed is the dynamics of human crowds. Due to the complexity of human crowd
behavior, mathematical modeling of their motion has attracted a lot of attention,
and the literature is large (see Refs. 5 and 34). In broad terms, the models that
have been proposed can be grouped into two classes by scales. One class is the
microscopic, individual-based model inspired by Newtonian mechanics focusing on
inter-particle interaction, often referred to as “social force” models. There, each per-
son is treated as a particle experiencing a simple, intuitive interaction to adapt its
walking speed and direction.?®32 The other class treats the crowd as a continuum
flow, which is well suited for large-scale, dense crowds provided the characteris-
tic length between pedestrians is much less than the typical length scale of the
region. These continuum models are typically derived either from microscopic dis-
crete models via kinetic theory or directly following a fluid dynamic approach with
fluxes from optimal control theory or mean-field games.!25:2

In this paper, we focus on a particular multiscale crowd model known as
ASCRIBE.® This model has the interesting property of tracking the level of fear
within the individual agents, which is assumed to influence their motion and also
exhibits contagion-like properties, described in detail below. This model has been
used in the agent-based simulation tool ESCAPES®® that has been used to model
evacuation scenarios of the International Terminal at Los Angeles International
Airport (LAX). It has also been found that the ASCRIBE model has compared
favorably to actual crowd footage relative to other crowd models.?*

In Ref. 7, a mathematical look at the ASCRIBE model through particle, contin-
uum, and kinetic descriptions was developed. In this model, the kinetic description
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in one dimension takes the form

Je+(af)e =7v(q—q")f)gs (1.1)

where f(t,z,q) is the probability of finding a person with fear level g at time ¢ and
position z. The quantity ¢*(¢,x) is the local “average” fear level weighted by the
distance to x:

() = JJ 5z = yD f(t.y, 9)adady
JI sl = y)f (t,y, )dady
It models the fact that people’s emotion will be affected by their neighborhood.
Here (r) is the interaction kernel that decays with r and integrates to one. The
continuum limit of (1.1) is obtained by taking the zeroth and first moment of (1.1).
That is, multiplying (1.1) by (1,¢)7 and integrating against ¢, one has

pe+ (pQ)e =0, (pd) + (p3*)z = vp(a* — §) (1.2)

under the mono-kinetic distribution assumption (which will be specified in the next
section). Here p(t,z) and ¢(t, z) are the macroscopic density and bulk fear level:

plt.) = / f(te.q)dg,  pilt.z) = / £(t,z, q)ada. (1.3)

The continuum equation (1.2) can be considered as a pressureless Euler equation
augmented with a nonlocal alignment which acts as a regularization. It has been
shown in Refs. 7 and 51 that there exists a critical threshold depending on the
equilibration rate v and radius of interaction, such that if the initial variation of
the fear level 9,¢(0,z) is above the threshold the system admits a global smooth
solution. Such a solution will lead to a flocking in the long time limit for if we
further assume the initial data is compactly supported.®’»'* Let us mention that
the critical threshold phenomenon is typical for nonlocal PDE, see for example
Ref. 45 for a scalar conservation law. On the other hand, if the initial variation is
below the threshold, there is a finite time break down of the continuum system (g,
and p blow up) and shock forms in ¢. This, in analogy with the microscopic agent-
based model, means the particle characteristics cross. In this case, the continuum
model fails and the kinetic model is necessary. Therefore, this crowd contagion
dynamics has displayed a multiscale structure: when the underlying microscopic
particle characteristics do not cross, a continuum description is enough, otherwise
a kinetic model is needed.

To efficiently simulate such multiscale dynamics, we develop here a hybrid
method where a kinetic solver is switched on wherever the macroscopic description
ceases to be valid. The microscopic and macroscopic variables are linked through
the local equilibrium. However, unlike the Boltzmann equation in the hydrodynamic
regime whose local equilibrium is a well-defined Maxwellian, the equilibrium here
is a delta function in the velocity space, which makes any regime indicator that
depends on it very sensitive to the way the delta function is approximated. To this
end, we propose a uniform indicator that works for both transitions from kinetic
to continuum and vice versa. It depends on the distance of ¢ and ¢* following an
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asymptotic property of (1.1). A threshold on the magnitude of p is also placed to
avoid mislabeling near the center of the shock.

Now let us consider the problem from a different point of view. Notice that the
failure of the continuum system lies in the blow up of density, which comes from the
formation of a shock in fear. However, in real situation, people who are more scared
will pass through the less scared ones ahead of them, and lead to a mixed case where
people with different fear levels may be present at the same position. Therefore it
is desirable to consider multi-valued fear solution instead of the shock solution.
This is also suggested by the microscopic particles system, as crossing of particle
characteristics leads to a multi-valued fear level. The study of numerical methods for
computing multi-valued solutions is pervasive in different contexts, such as Refs. 38,
35,47, 17, 18 and references therein. The methods basically fall into two categories:
one is a particle method and the other is a level set method. The particle method is
easy to implement and free of numerical dissipation, but designing a robust recovery
method of the point values from its particle approximation is a challenging task,
and the computational cost is sometimes very high (in our case it is O(N?) with N
being the number of particles). Here we take the level set approach, and formulate a
level set equation for computing the multi-valued fear level. To compute the density,
we derive another evolution equation based on a new function, which follows the
same spirit as in Ref. 36. This level set equation is of similar form as the kinetic
equation, but a local level set method can be utilized to significantly reduce the
computational cost in phase space.

The rest of the paper is organized as follows. In Sec. 2, we give a brief review of
the contagion dynamics and provide a simple derivation to link the different levels
of model hierarchy. Section 3 is devoted to the hybrid algorithms and contains the
regime indicator, interface condition, and discretization. In Sec. 4, we develop a
level set formulation for the continuum system, and in Sec. 5, we present several
numerical examples to show the performance of these two schemes. Finally, the
paper is concluded in Sec. 6.

2. Contagion Dynamics with Continuum Limit

In this section, we briefly review the contagion dynamics in one dimension, and
provide a formal relationship between different levels of the models. First, the
agent-based model in the microscopic level reads

N
da; dg; . . 21 kiil
i = qi, E:’Y(qi—qi), qiszi, i=1,2,..., N, (2.1)
Zj:l Ki,j

where each particle i represents a person, and x;(t) and ¢;(¢) are its position and
fear level. Here we assume that velocity is proportional to fear level, which simply
means that agents will run faster if more scared; this assumption has been made by
others.#6 The fear ¢;, meanwhile, undergoes a form of contagion, whereby agents
tend to equilibrate their own fear level with a weighted average of the fear level of
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the other agents, ¢;. Because of this dynamic, the range of fear levels exhibited by
the various agents is bounded between whatever the minimum and maximum fear
levels were at t = 0. The interaction kernel x; ; = £(|x; — z;|), which serves as the
weights in the average ¢}, is a decreasing function of mutual distance between two
particles and is parametrized by an interaction distance R. N is the total number
of particles. Parameter v describes the contagion interaction strength and it may
vary with particle for more general cases.

The microscopic system (2.1) is often too expensive to compute as N becomes
large, in which case one needs to consider the next level of the model — the kinetic
level. The passage from the microscopic system to kinetic description can be accom-
plished via a mean-field limit.!>!2 Denote the empirical distribution density by

1
N =D 6w — @i(t)d(g — (D)), (22)

N 4
i=1

where ¢ is Dirac delta function, and we assume that the particles remain in a fixed
compact domain (z;(t),q;(t)) € Q@ C R? for all i and up to the time we consider.
Then Prohorov’s theorem implies that the sequence {fV} is weaklys relatively
compact. Therefore, there exists a subsequence {fN*}; such that f™¢ converges
to f with weak*-convergence in P(R?) and pointwisely in time as k — oo. Here
P(R?) denotes the space of probability measure on R?. Now consider a test function
¥ € C§(R?), we have

d,.n d al
S, = £<N2 x—w<>>6<q—qz<>>w>
N
=%%Zw< (©).0:(2)
i=1

¢m qi + ¢q’7 )

||
H'M >

<¢ N gl i Z;V:I Ki,jq5 _
«q, f > + Nz¢q z:Niﬁ —4qi |- (2.3)
i=1 j=1"ij

Here (o), , means integration against both z and ¢, and (e), means integration
only in z. Further,

Z (Jz; — x; =< (Jo; —

2 |

N
Z Y — ;) > = K * ppn (2i),

x

N N
Z (lzi — ;] qJ=< (|x; — Z Yy —Z;)q > = rxmygn(z5),

x

2 |
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where we have used the definitions

pre(@) = 5 > 0la — )

and

1 N 1 N
myn (z) = <q, N;(S(x —x;)0(q — Qj)> = N;é(ac—xj)qj

z,q

Therefore (2.3) reads

d N
£<fN»1/J>z,q = <wwq7fN>m7q+ly<fN7wwq _qu> ’
z,q

K * pr
which leads to

N Nv i N o _ JI sz —y) f (v, @)adady
foo +(@fM)e=7(a=a")f ) a T w7 = yDF (v, a)dady (2.4)

via integration by parts. Now letting k& — oo, the subsequence f™* formally leads

to the limiting kinetic equation

fe+(af)e =g = ") f)qg (2.5)

Third, we derive its continuum limit. Take the moments of (2.5), we have the
following evolution equations for the macroscopic quantities: the mass density p(¢, )
and bulk fear level ¢(¢, ) defined in (1.3):

pe+ (p@)e =0, (D)t + (7 + P)o = yp(q" — @), (2.6)
where the pressure P(t,x) given by
P(t.a) = [(a- P2 q)da (27)
Now we assume that the particle distribution is mono-kinetic in velocity space, i.e.
[t x,q) = p(t,2)0(q — 4(t, ), (2.8)
then the pressure vanishes and (2.6) is rewritten as
pt + (p7)a = 0,

. oy e o SRl —yDe(y)aly)dy (2.9)
(@)t + (p@)e = (" — @), ¢ = T w7 — Do)y

which can be considered as a pressureless Euler equation with a nonlocal align-

ment. Note that, at least formally, system (2.9) reduces to the classical pressureless
13,9

Euler system™>” in the limit of zero interaction radius and infinite interaction rate,
i,e. v — oo and R — 0. Such system arises in modeling sticky particles in gas
dynamics, and its solution admits a J-shock that has been well-understood both
analytically3316:9:43,44.50 and numerically.'® Here in the second equation of (2.9), the

nonlocal alignment can help to regularize the J-singularity and may lead to a global
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classical solution under some appropriate assumption.”®! When classical solution
exists, the second equation in (2.9) is equivalent to the following non-conservative
form:

@+ 43z =(¢" — @) (2.10)

When classical solution does not globally exist, in which case ¢, blows up in finite
time (a shock in ¢ forms), a kinetic model is needed after the break down of the
continuum system. From a microscopic point of view, this case corresponds to the
crossing of particles’ characteristics.

To end this section, we would like to mention an interesting result in Ref. 46
for self-organized dynamics, whose model in one dimension is the same as ours.
In that paper, the authors focus on the long-time behavior (or so-called flocking
behavior) that characterizes a long-time “equilibrium” when all particles form into
one cluster with the same speed. On the contrary, in this paper we are interested in
the transient behavior, especially when the particle characteristics can cross, whose
long-time behavior may not be flocking. Moreover, we would like to treat different
kinds of initial data, not just those with compact support as is considered in Ref. 46
(in analogy with the agent-based model, compact support means a finite number
of agents).

3. Hybrid Scheme Via Kinetic Formation

The high dimensionality makes the kinetic equation expensive to compute, while
the continuum system breaks down in the presence of the crossing of characteristics.
It is therefore desirable to construct a hybrid scheme that automatically becomes a
kinetic solver whenever the particles in the underlying microscopic system tend to
cross and stays as a macroscopic solver when particles are kept a certain distance
away.

3.1. Regime indicators

Our first task is to provide a formal justification of the mono-kinetic distribution
that links the kinetic equation (2.5) with continuum system (2.9). Consider a space
homogeneous toy model

1

€

fo=Ya— ) / F(0,q)dg = 1, (3.1)

where ¢* is any constant. The following proposition highlights the relaxation of the
kinetic solution f toward the mono-kinetic distribution (2.8) at the fast € time scale.

Proposition 3.1. Let f(t,q) > 0 be the solution to the initial value problem of
the space homogeneous equation (3.1). Assume f(t,q) decays faster than # as

lg| — oco. Then f converges to §(q — q(t)) and 6(q¢ — q*) formally as € — 0, where
g = | f(t,q)qdq. Therefore, 4(t) — q*.
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Proof. Denote the variance

F(O) = [ (0=t a)da (3.2
then
o= [ a2 - 0usds = [ 0~ 2da =7 [ @-D7la - )l

- _E/R(q_q*)(q_q)quz —%/Rq(q—d)qu,

€

here the second and last equalities use the fact that fR qfdq = ¢, and the fourth
one uses integration by parts. Notice that

/R ¢fdq - /R g4fdq = /R ¢?fdg /R fdq - ( / fqdq)2 >0,

thanks to the Cauchy-Schwarz inequality, we have 22 < 0. As a matter of fact, we
have

dF 2 2 2
= =_= —§)fdg=—= —§)fdg=—=
o 6/Rq(q q)fdq E/}R(q q)°fdq=——-7F,
thus ]—" —0ase— O and thus the equilibrium solution is f = (¢ — ¢). Similarly,
let G(t) = [o(q f(t)dg, then
= = [(a=da")fidg= —/(q—q )[(q = 4*)flqdg
R € Jr
2 § 2
—-2 [-ara0--20.
R €

€

Hence f converges to §(¢—¢*), and together with the above result leads to ¢(t) — ¢*.

Now we return to the space inhomogeneous case

1
fetafe = —lla=a")fla, (3.3)
where similar arguments can apply to show

Proposition 3.2. Let f(t,x,q) > 0 be the solution to the initial value problem of
the space inhomogeneous equation (3.3). Assume f(t,x,q) decays faster than # as

|g| — oo. Then as € tends to 0, we formally have f converging to p(t,x)6(q—q* (¢, x))
and p(t,2)0(q — q(t, x)) with p(t,z) and ¢(t,z) defined in (1.3) and ¢*(t,z) defined
n (2.9).

Proof. The proof is similar to that in Proposition 3.1. Again denote

Fit,z) = / (¢ — d(t,2))2f (t,, q)da, (3.4)



Efficient numerical methods for multiscale crowd dynamics 213

then
% _ _g/(q—(j)(q—q*)qu_/Qfa:(q_(I)qu
2

=< /(q — §)*fdq — /qu(q - )%dq

= —%f— /qug(q —q)*dg.

Thus in the limit ¢ — 0, we have F = 0. Therefore, the dependence of f on ¢
converges to a delta function d(q — ¢(t, z)). Then by conservation of mass, we have
f— p(t,x)d(q—q(t,x)). The convergence of f toward p(t,z)d(q—q*(t,x)) similarly
follows. |

The above propositions provide insight on the situation wherein continuum sys-
tem (2.9) is a good approximation to the kinetic model (2.5), that is, when ~ is large
enough. This is consistent with Theorem 4 in Ref. 7. Moreover, since ¢ approaches
q* at the same time when f converges to the mono-kinetic distribution, it suggests
a mechanism to label the solutions in different regimes. That is, one can check

|q(t, ) — ¢" (¢, 2)| > €0 (3-5)

for every x. If it holds, then this point falls into the kinetic regime, otherwise it is
labeled as a continuum point. A reasonable choice of ¢y is

€0 = max lg* (0, z) — g(0, z)|. (3.6)

Notice however, when the continuum model is no longer valid and ¢(z) is very
different from ¢*(z), there could still be §(z) = ¢*(x) at some points (such as their
intersection). Therefore, to avoid mislabeling such points as continuum regime, we
propose another criteria to accompany (3.5):

p(T) > pmax- (3.7)

This means that if the density is beyond a threshold, which in analogy with the
agent-based model means two particles are too close, we need to switch on the
kinetic solver. Here a rough choice of ppax 1S pmax = max, p(0, x), but more detailed
ones are problem-dependent, and will be specified for each examples in Sec. 5. Since
the indicator (3.5), (3.7) only depends on macroscopic quantities ¢, ¢* and p, it will
be used for both the transition from kinetic to continuum or continuum to kinetic
regimes.

Remark 3.1. Since the mono-kinetic distribution p(¢,x)d(q¢ — ¢(¢,x)) can be con-
sidered as a local equilibrium, a natural criteria from kinetic to continuum would
be || f(t,z,q) — p(t,x)d(¢—q(t,x))||q < €1 for some small constant e;. However, one
can only approximate the J-function, which makes such a measure very sensitive
to the way we do the approximation. So, we will not use this criteria but stick to
(3.5), (3.7) for both transitions.
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3.2. Space and velocity discretization

In this section, we summarize numerical discretization of both kinetic equation
(2.5) and continuum system (2.9), and postpone the interface condition to the next
section. The choice of discretization is not unique, see for example, Refs. 49 and 52,
and most shock capturing methods for hyperbolic systems will apply.

Divide the spatial and velocity domain into a number of cells [xj;% (Tjg 1 ]
and [qk_%,qk+%], where j € 1,2,...,N,, k € 1,2,...,N,. Here N, and N, are
the total number of points in z- and g¢-directions, respectively. Each cell is centered
at x; or g with a uniform length Az and Ag. Denote f; = f(t,2;,q;) and ¢} =
q*(t, z;), then a first-order semi-discrete upwind scheme of the kinetic equation (2.5)
reads

Ti+ik ~ -1k ety ~&ik-1

O fi =0 3.8
tf]»k + A.’I; + vy Aq ) ( )
where
lax| + ax Qs — |
Mg = 5 Jin T =5 fisLk
=l (3.9)
. nj,k nj+17k7 .
6 — drr g |+ (0] — Gy 2) (@ = drry) = 4] — Gy s
Gy = — - 2= fig + — T = fikt
T 2 2
=+ & (3.10)
Here we have used edge-values for the velocity discretization and g, 1 = Getdeis
q; is computed using a midpoint rule for the integral (2.4), i.e.
- KX — X5 ik kA.%'A
. Sounllny i fisatadg .

“= gkl —xil) firArAg

The extension to high resolution in space is straightforward using a slope limiter.
More specifically, denote

_ ot -
T]j+%,k _nj+%,k+nj+%7k7 (312)
and let
Az R O L
+ + + + Jj+1,k J.k J:.k J—L1k
Ur lk:n',k+_g',k’ U,’k: © n 7 , (313)
Jt3, J 9 i J Az Thir — 1k
Nt e =Mk — ar - L 77{71,% Mjtde — Tk (3.14)
i+l = i1k i+1,k> ik = — — . .
Jj+s.k J+ 2 J+ J Ax nj’k: — njil’k

Here ¢ is the slope limiter function such as the Van Leer function!:

o(0) = 1110

= . 3.15
1+ 16 (3:.15)



Efficient numerical methods for multiscale crowd dynamics 215

To construct a second-order scheme in velocity, we add a flux limiter.*2 Then
(3.8) is modified to

Mgk ~ M=tk Siktd “ &kt Cikry —Ciat
+ +

O fjn + s A Ag =0. (3.16)

Here Cj ;. , 1 is the corrector defined as

1 At ~
Cikty = 5185041 <1 - A—q|3j,k+;|) Wikt 1, (3.17)
where Sj,k—% = q; — qk—%? Wj,k—% = fj,k — fj,k—%? and Wj,k—% = Wj,k—%‘ﬂ'

W
(ﬁ) The subscript kis k—11if s;, 1 >0and k+11ifs;, 1 <0. ¢ is again
the Van Leer function (3.15).

For the continuum system (2.9), we use a kinetic vector splitting method.23-48:31
In particular, denote p; = p(t, ), ¢; = q(t, z;), we have the following semi-discrete

scheme for macroscopic system:

F...—F
U, + 3+2Tx]2 =5, (3.18)
where
Uj:/(l,q)Tf(t,xj,q)dq = (ps: 033" (3.19)
ey = [ o) = =pla—q)da+ [ (1,a)" =5 =p518(q = Gj41)dg
3 + 14 gj+1— 14
= (2 |j|pj+ I |]+1|Pj+17
2 2
~ ~ ~ ~ T
- G5+ 1q5 = Gi+1 — 19l
0 2| il 4, I 2\ |]+1pj+1) , (3.20)
S = (0,7vp5(a; — 4;))" (3.21)

Now let us denote

n G+lal G+l N\ _ G-l G-lal N\
Fim = 5 P PG o By = 5 Pir— 5 Pl )

(3.22)

then the fluxes in (3.20) are Fi 1= Fj+ + F; 1. A second-order extension of the

fluxes can be computed as follows. Write F;; 1= F:l + F 4, and define Fjjil in
2 2

J i+3’
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the same manner as that in (3.13), (3.14). That is,

Ax Ft . —-F" (FF—F"

+ _ pt + + _ g+l J J Jj—1

Fj+%_Fj +TU]», O'j = Az F._‘:H—F._‘— s (323)
J J

— _ Ax _ _ Fji_F]i]_ Fj;]_—Fji
Fia=Fun——505, 0y =—"F-"F¢ FF ) (3.24)

3.3. Interface condition

This section is concerned with the connection between two cells of different types.
Let J be the position that separates two regimes such that all j < J belong to
the kinetic regime and j7 > J are in the continuum regime. Then we propose the
following interface condition.

e To compute fy_1 k via (3.8), we need to prescribe f; at the last time step. Since
frr falls into the continuum regime, this can be done simply by using the local
equilibrium. Namely

fok(@) = psd(ar — Gs)- (3.25)

e To compute p; and ¢y via (3.18), we need py_1 and ¢;—1 from the last step. This
is done by taking the moments of f;_; thanks to the relationship (1.3). More
precisely, we have

pr1=> fr1xla, pradr1=Y_ fro1xaAq. (3.26)
o o

Remark 3.2. This simple choice of interface condition is inspired by the observa-
tion that density and macroscopic velocity should undergo a continuous transition
as v remains unchanged between these two regimes. Similar conditions have been
used in Ref. 27 for rarefied gas dynamics. However, if we want to deal with the
cases when v has a discontinuous or sharp transition in magnitude, different inter-
face conditions may need to be used to take into account the possible boundary
layer, and this is beyond the scope of the current paper.

Now the fully discrete algorithm is in order. Denote f7, = f(t",2;,qx), p} =
p(t",z5), ¢ = q(t",x;), ¢;" = q*(t",2;). At time ", also denote by C™ the
collection of cells that are in the continuum regime, i.e. [xj_%,xj+%]jecn is in
continuum regime, and by K™ the collection of cells in the kinetic regime, where
C"UK" =X ={1,2,..., Nz }. We have (p},q}) for j € C", and f}' for j € K".

e Compute ¢;" for all j and G}, p}} for j € K" via (3.26).

e Find the set K™™' of all j such that \qj*" — G| > €0 or P > pmax, which is the
new kinetic regimes. Then the new continuum regime is C"*! = X\ K1,

e For j € K"\ K™, compute fih = p}0(ax — G}), where ¢ is approximated using
(5.1).
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e Calculate (p}*',g'"") for j € C™ from (3.18) and use interface condition (3.26)
when necessary.

e Calculate f;f,jl for j € K™*! from (3.8) and use interface condition (3.25) when
necessary.

4. A Level Set Method

As mentioned before, there are cases when the solutions p and ¢, to the nonlinear
system (2.9) blow up in finite time, which implies the formation of shock in g.
However, from the underlying microscopic system, these situations happen when
the particles’ characteristics cross. In other words, the people who are more scared
tend to pass through the less scared ones ahead of them, leading to a case where
people with different fear levels may be present at the same location. This implies,
instead of considering the viscosity shock solution to the system, we should consider
the multi-valued solution that is determined by the fear level and corresponding
crossing waves. In this section, we develop a level set method that is capable of
capturing the multi-valued solution for the continuum system.
Recall the continuum system (2.9):

pt + (pG)x =0, (4.1)

. o o el —yDe(y)a(y)dy

@ +4d =7 -7, q Trle— ey (42)

Here we use the non-conservative form of the ¢ equation as it produces the same
results as the conservative form when there is a classical solution, and generates

possible multi-valued solution when classical solution breaks down. First we form a
level set function ®(¢, z,p) such that the multi-valued (¢, x) can be realized as its
zero level set, i.e.

O(t,x,p) =0 atp=4q(t,x) or Otz q(t,z)) =0. (4.3)

The remaining derivation follows that in Refs. 17, 38 and 36. Taking the time
derivative of (4.3), one has

0y ® + 0,80,G = 0,

which becomes 9;® + 9,P(—Gq, +v(¢* — ¢)) = 0 thanks to (4.2). Then the level set
equation in the phase space follows:

4 ® + 9 ®(—ppz +v(p* —p)) = 0. (4.4)
Taking the spatial derivative of (4.3), one has 0,® + 9,99,.¢ = 0, thus
0, P
Opq = ———. 4.5
1==3,8 (4.5)

Plugging (4.5) into (4.4) leads to
0@ + pdy® + 70, ®(p" — p) =0, (4.6)
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where p* (¢, ) depending on the density will be defined later (see (4.11)). For smooth
initial data go(x), the initial condition for ® is

®(0,2,p) =p — Go(@); (4.7)

while for discontinuous §o(x) such as Riemann initial data, ®(0,z,p) should be
chosen as the signed distance function to the interface p = go(x).3® Now, we need
to derive the evolution equation for density p. Since ¢ is multi-valued, p can be
multi-valued too. Denote p(t,z) = p(t, z,¢(t,x)), as p(t,z) solves (4.1), p satisfies
the following equation:
O + pOeq + G0xp + Opp(01q + G0G) = 0.
Then plug (4.5) and (4.2) into the above equation, we have
R R . Py
Ocp +p0sp+ (0" —p)Opp = pg— (4.8)
P

where we have again used p = §. Here the drawback of Eq. (4.8) is that ®, can be
zero, which makes its right-hand side singular. Notice, however, that the physically
relevant density should not be multi-valued, so, inspired by Ref. 36, we consider it
to be the projection of its value in phase space onto the curve ® = 0, i.e.

plt. ) = / Pt 2. p)S(B(p))| @, |dp. (4.9)

Similarly the total fear is defined as

Q(tz) = / pp(t, 2, p)3((p))|®,|dp, (4.10)

and thus

J (5 % p)pd (2 (p))|®p|dp
J (55 p)5(2(p))|®pldp -

pr(tx) = (4.11)

Now, we define a new quantity

g(t,x,p) Zﬁ(t,x,p)|¢p(t,x,p)| (412)

As always, we need to write down the evolution equation for g. To this end, taking
the derivative of (4.6) with respect to p, we obtain the following equation for ®,:

0t ®p + 0Py + v(p* — p)0p P, = =Dy + 7P (4.13)
Then g defined in (4.12) solves
g +p9xg +(p" — p)Opg

= |, |(0tp + pOup +y(p™ — P)Opp) + (Ot |Py| 4 PO |Py| 4+ v (™ — p)Op| Py |)
Dy .
= p(}T|(I)p| + p(=Po + 7Pp) sgn(Pp)
p

=p|®p| =9, (4.14)
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where the second equality uses (4.8) and (4.13). The initial condition for g reads as
follows:

9(0,z,p) = po(2)|®,(0, 2, p)l, (4.15)

and if ®(0, x, p) takes the form (4.7), then g(0,x,p) = po(z).
To summarize, one can solve (4.6) and (4.14) with initial conditions (4.7) and
(4.15), respectively. Then ¢ takes the zero level set of ®(t,z,p), and p(t,x) and

Q(t,x) are computed via

At x) = / olt, 2, p)(®(p))dp,  Q(t,x) = / pot. z.p)5(B(p))dp.  (4.16)

Remark 4.1. It is interesting to point out that g solves the same equation as the
kinetic probability density f, which suggests some similarity between the kinetic
formulation and level set formulation, as both of them lift the dimension of the prob-
lem by one and unfold the multiple values. In fact, this relation has been observed
in the literature of computing multi-valued physical observables for geometrical
optics, such as Refs. 36, 26 and 35. The advantage of the level set approach is that
the high dimensionality from the phase space can be compensated for by using
the local level set method (consult e.g. Ref. 47), which reduces the computational
complexity to that comparable to a computation in the physical space. By contrast,
the kinetic formulation is amenable to the hybrid construction in Sec. 3 thanks to
its close relation with the macroscopic quantities.

5. Numerical Examples

We present several examples to validate our hybrid scheme and level set method in
this section. In what follows, we always take g € [Lg1, Lga| with Lgi = 0, Lgo = 3
and x € [Ly1, Lyo] with L1 = =50, Lo = 50. Again N, and N, denote the number
of points in ¢- and z-directions, respectively. We assume Neumann boundary con-
ditions in both ¢ and z. The time step At is chosen to satisfy the CFL condition.

For the continuum system, the time step is At = maé(fm where ¢ is the initial

velocity; for kinetic equation, hybrid scheme and level set method, the time step is

: A
all chosen as At = min{-8% 24
Gmax ’ 2¢max"Y

The delta function in the kinetic and hybrid scheme is approximated by
1 -

= [0, Ro=0.04 5.1
VTR © 0 (5-1)

when necessary, and Agq is small enough to resolve it. The interaction kernel we
choose here takes the form

}; here gmax = max; g;.

d(q) ~ E(q)

1 R
22+ R2w
For the level set method, Eqs. (4.6) and (4.14) are discretized similarly to the
kinetic equation, and the delta function in computing the moments (4.16) takes the

K(z) = (5:2)
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following approximation3S:

Kt
COSM) LK (t2,p)| < 0t @),
n

— (1
0 (K (t,,p)) = 2”< |
0, K (t,2,p)] > n(t,a),

(5.3)

where n(t, ) = 2max,(|¢p(t, z,p)|, 1)Ap. Here p € [Lg1, Lg2] with Ly1 = 0, Lgo = 3.

5.1. Asymptotic property

We first check the asymptotic behavior of the solution in the spatially homoge-
neous case. Consider equation f; = v[(q¢ — ¢*) flq with non-equilibrium initial data
f(0,q) = 2E(q — 0.6) + 1E(q — 1.2) and a fixed ¢* = 1. Aq is chosen 0.02 to
resolve the 0 function in (5.1). The first three figures in Fig. 1 display the evolu-
tion of f(t,q) toward a local equilibrium. We start with a non-equilibrium ini-
tial data and as times goes on f concentrates on ¢*. Figure 1 on the bottom
right presents the distance |¢(t) — ¢*| in time with v = 1, 2 and 3 respectively,
where we see that bigger v gives faster convergence rate as implied in the proof of
Proposition 3.1.

Next we consider the spatially inhomogeneous case fi + qfe = v((¢ — q*)f)q
with v = 100 and initial data

1
p1(0,2) = sin (%) +2, qr(0,2) = 5(3 — tanh ),
(5.4)

f16o.0) = pr(o) ({50 — ae) ~ 05) + T Ea — ) +03)).

Figure 2 shows the evolution of f(¢,z,¢q). Initially f;(x,¢) has two bumps in ¢ for
every z, as displayed in the left plot of Fig. 2. As time evolves, f(t,z,q) starts to
concentrate on ¢(¢, x), as confirmed by the right plot of Fig. 2 where the projection
of f onto the (z, ¢)-plane matches well with ¢(¢, x).

5.2. Convergence test

In this section, we perform a convergence test to check that the interface condition
proposed in Sec. 3.3 will not violate the accuracy of the scheme. Consider the
spatially inhomogeneous case with smoothed Riemann initial data

pr(z) =1, q(x) = %(3 —tanh(0.25z)),  fr(z,q) = pr(x)E(q — q1(z)).  (5.5)

_ . _ 1 1 1 1 1
We fix Ag = 0.001, and take the space mesh size Az = 75, 55, 157 35> Teo» €S-
pectively. gmax = maxj{qj}. The output time is tax = 0.1, and we check the error

in I'-norm at t = tmax,

elgg?r = l€az (tmax) — 2ae(fmax) |15 (5.6)
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Fig. 1.  Solution to the spatially homogeneous equation (3.1) with non-equilibrium initial data
(see the upper left figure). The next two figures display the solution with time ¢ = 1 and 3,
respectively. The dotted line in these three figures denotes ¢*. The lower right plots the distance
|g(t) — g*| vs. time for v =1, 2 and 3.

t=0 t=0.05

—q 0 -5 0 5

-10 -5 0 5
X

Fig. 2. Plot of f(¢,,q) to the space inhomogeneous equation with initial data (5.4). Left: initial
configuration. Right: plot at time ¢ = 0.05. Overlaid with the plot of macroscopic bulk fear §(t, x)
(dashed white line) at initial and final times.
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Fig. 3. (Color online) Plot of relative error (5.6) vs. mesh size Az. Here z € [—50,50], ¢ € [0, 3].
Left: kinetic equation. Right: hybrid scheme with pmax = 1.01, €9 = maxg |¢(0, ) — ¢*(0, z)|. The
red dashed curves have slope 1.

where £ can be f, p and @. The equilibration rate is v = 0.1 and interaction radius
is R = 0.1. We only check hybrid scheme with first-order discretization (3.8)—(3.10)
and (3.18)—(3.21). The results are collected in Fig. 3, where a uniform first-order
accuracy is observed.

5.3. Riemann problem

In this section, we compare our hybrid scheme and level set method with the solu-
tions to the kinetic and continuum systems for relatively long times after the cross-
ing of characteristics. Here the initial density takes the form

pi(a) = Z-(1 — tanh(202)) + 2 (1 + tanh(20)), (5.7)
with pr, =2 and pgr = 1, and initial fear is chosen as
1
qr(x) = 5(3 — tanh(x)). (5.8)

The equilibrium rate is v = 0.1, and R = 0.1 in the interaction kernel (5.2). Our
meshes are Az = 0.05, Aqg = Ap = 0.01. We use a moving frame with velocity

§ = YPLILYVPRIR _  5or5g (the formula for the shock speed obtained in Ref. 7).

VAL T PR
The results are gathered in Fig. 4, where we compare the density p(¢,z), multi-
valued velocity ¢(¢,x), and averaged velocity g((tt f)) For the continuum system, it

immediately gives gp = @, while for the kinetic equation and level set formula-
tion, the density p(t,z) and total fear Q(¢,x) are calculated via (1.3) and (4.16),
respectively. Here, a good agreement is observed among the kinetic system, hybrid
scheme, and level set method, while the continuum system fails to capture the
detailed dynamics in the vicinity of the shock.
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Fig. 4. (Color online) Solution to the kinetic model and continuum system with Riemann initial
data (5.5), (5.7). Upper left: plot of macroscopic density p(t,x). Upper right: plot of macroscopic
fear ¢(t,z). Lower left: plot of the solution f(¢,x,q) to the kinetic equation, overlaid with the
contour plot of the zero level set of ® (¢, z). Lower right: plot of f(¢, z,q) using the hybrid scheme,
and the red dashed curve is g(z) in the continuum model. Here v = 0.1, R = 0.1, and final time
is t = 10. For the hybrid scheme, we choose pmax = 2.1 and €g = 0.0489 from (3.6).

To better confirm that our hybrid scheme is able to detect different regimes
automatically, we consider the following initial condition:

pi(x) = B2(1 — tanh(20( — 10)) + BL(1 + tanh(20(x = 10))),  (5.9)
qr(z) = %(2.670.8 tanh(z + 10) — 0.6 tanh(z — 10)) (5.10)

with pr, = 2 and pr = 1, which will produce a two-shock solution. Again the
parameters are as follows: v = 0.1, R = 0.1, final time ¢ = 10, and for the hybrid
scheme, pmax = 2.1 and €9 = 0.0299 from (3.6). Additionally, we use a moving mesh
with speed s = 1.6, which is the speed for the left shock. With exactly the same
grid, one sees in Fig. 5 that the solution from the continuum model is inferior to
the hybrid scheme or level set method, both of which are in good match with the
solution to the kinetic equation.
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Fig. 5. (Color online) Solution to the Riemann initial data (5.9), (5.10) using the kinetic model,
continuum model, hybrid scheme, and level set method. Upper left: plot of macroscopic density

p(t, z). Upper right: plot of macroscopic fear G(t,z) = Cp?((:’;;

the kinetic equation, overlaid with the contour zero of the level set method. Lower right: plot of
f(t, z,q) using the hybrid scheme, with the red dashed curve being G(x) in the continuum model.

. Lower left: the solution f(t,z,q) to

5.4. General initial data

In this section, we consider a more general initial data which mimics a one-
dimensional version of the crowd motion in a traditional hajj pilgrimage. The initial
density and emotion level take the following form:

pr(z) = 0.5 21" L 05e72+D £ 01 —0.1e %, (5.11)
qr(z) =11—e* 7 (5.12)

and their plots are displayed in the upper left of Fig. 6. Here the region around
the origin represents the pillar at which stoning of the devil ritual takes place,
therefore the density has two bumps around it. The emotional level here represents
people’s willing to move forward, so people who are around the pillar tend to stay
put and thus cause a well in g; around this region. The other parameters are
v =0.1 and R = 0.1, and final time is t = 5. For hybrid scheme, we choose ppax =
max, pr(z) = 0.5644. Solutions are plotted in Fig. 6, where one sees that there are
two peaks in density, showing that these two places are the more dangerous to have
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Fig. 6. Upper left: plot of the initial data (5.11), (5.12). Rest three are solutions at time t =
5 using kinetic model, continuum system, hybrid scheme and level set method. Upper right:
macroscopic density p(t, z). Lower left: bulk fear level G(t,z). Lower right: f(¢, x,q) to the kinetic
equation, overlaid with the contour zero of the level set method.

crowd stampede. The multiple values in ¢ in the lower right figure correspond to the
fact that around the pillar, there are people with different emotions a portion
of them want to stay and others want to move forward. Recall the recent tragedy
of stampede near the holy city of Mecca, where a more detailed two-dimensional
modeling and simulation are expected, which we discuss below.

6. Future Work

In this paper, we have heavily explored the one-dimensional crowd model ana-
lyzed in Ref. 7. While certain real-world scenarios may in fact be pseudo-one-
dimensional — long, narrow hallways for example — a two-dimensional model
would likely be more appropriate for most scenarios. Though fully developing such
a model is outside the scope of this paper, we can offer some ideas as to what form
such a model might take, as well as how one might approach domain decomposition
of the type performed here within such a model.

Harkening back to the discrete model presented in (2.1), it is assumed there
that all of the agents wish to move in the positive z-direction. However, one could
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easily generalize by simply modeling the velocity of agent i as having magnitude
¢i, but having a direction @,(¢) that may vary from person-to-person and from
moment-to-moment:

dXi
dt

This would retain the original model’s idea that fear directly affects how quickly
the agents move, but would now allow the pedestrians to at least attempt some
sort of path planning through varying directions.

To complete such a model, one would have to specify how a;(¢) is chosen or
evolves. Here there are many possibilities. One method might generally fall under
the category of behavioral heuristics. Imagine, for example, that the panicking
agents have two potentially competing goals: (1) to move as directly as possible
toward a specific point in space that is presumably deemed safe (an exit, shelter,
etc.) and (2) to avoid running into obstacles and other pedestrians as much as
possible along the way. One could presumably construct a sort of energy function
for the pedestrians that would include these two factors, such that the minimum of
this energy would correspond the direction that achieves the best balance. Agents
could then make short time horizon optimization choices as they move through the
crowd, discretely choosing new directions on occasion, or could instead continuously
move down gradients of this energy as they travel. In fact, a model along these
lines is presented in Ref. 22, though this work does not consider the role of fear or
contagion.

Given a discrete model along these lines, one could likely formulate both
macroscopic and kinetic versions. Under the monokinetic assumption, the PDE rep-
resentation would introduce another equation for the quantity a(x,t), which could
be algebraic if agents make optimization choices directly, or could itself be a PDE
if agents tend to travel down energy gradients continuously. Importantly, though,
one would need to assume in this case that all agents at location x at time ¢ would
choose the same direction a(x,t). However, if we relax the monokinetic assumption
and move toward a kinetic model, we might instead expand phase space to now
include the angle of motion as well, making the phase space four-dimensional, plus
time.

In terms of numerics, we would need to consider the new quantity a(x,t) in the
same way as ¢. More precisely, f would depend on time ¢, space x, and “velocity”
(¢,a). The evolution of a(x,t) could be separated from the equation of f or its
macroscopic counterpart, and kept the same across different models: agent-based,
kinetic, and continuum. Thus it should not be difficult to determine the asymptotic
relation between the kinetic and macroscopic models as one can always do this
by considering the spatially homogeneous scenario. As a result, a similar regime
indicator to that used in this work would follow. To implement a hybrid scheme in
higher-space dimension, we could simply use a Cartesian grid and extend the one-
dimensional method using a dimension-by-dimension technique. A more elaborated
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method would use adaptive mesh or immersed interface methods. Likewise, the
level set method that we derived in one-dimensional can be seamlessly generalized
to higher dimensions, as one only needs to re-derive the level set equation using a
vector form. Nevertheless, special treatment would be needed to preserve the norm
of a(x,t).

7. Conclusions

We constructed two numerical schemes for crowd dynamics with emotional conta-
gion. Here the kinetic description provides better resolution than the macroscopic
model whose viscosity solution becomes incorrect when the characteristics at the
particle level cross. However, because of the high dimensionality, solving the kinetic
equation is often expensive and sometimes unnecessary. Our first approach is a
hybrid method that connects a continuum solver with a kinetic solver. The criteria
that distinguishes two regimes is based on the macroscopic density and average fear
level. The interface condition is proposed according to the continuity of the macro-
scopic quantities. Unlike previous research on hybrid schemes for kinetic and related
problems, which focus on the Boltzmann-type equation with a regular distribution
(Maxwellian) as an equilibrium, our method here provides a new way to treat the
singular (delta-like) equilibrium. As such types of equilibrium emerge in many other
contexts such as biological swarming and opinion dynamics, it is desirable to apply
our method to a broader scope. Our second approach is in the level set framework,
which is inspired by the observation that the crossing of characteristics for particles
results in a multi-valued solution in the fear for the continuum system. Although
the so-derived level set equations live in a higher dimension than the macroscopic
system, they can be solved just around the zero level set, which reduces the compu-
tational cost to that comparable to the macroscopic solver. Future research would
be on deriving a more systematic expansion of the solution so that we can perform
high-order coupling. Rigorous convergence toward the monokinetic distribution as
well as the convergence rate is still lacking and would be an interesting project.
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