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Highly clustered event sequences are observed in certain types of crime data, such as burglary and gang violence, due to crime-specific
patterns of criminal behavior. Similar clustering patterns are observed by seismologists, as earthquakes are well known to increase the risk
of subsequent earthquakes, or aftershocks, near the location of an initial event. Space–time clustering is modeled in seismology by self-
exciting point processes and the focus of this article is to show that these methods are well suited for criminological applications. We first
review self-exciting point processes in the context of seismology. Next, using residential burglary data provided by the Los Angeles Police
Department, we illustrate the implementation of self-exciting point process models in the context of urban crime. For this purpose we use a
fully nonparametric estimation methodology to gain insight into the form of the space–time triggering function and temporal trends in the
background rate of burglary.
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1. INTRODUCTION

Criminological research has shown that crime can spread
through local environments via a contagion-like process (John-
son 2008). For example, burglars will repeatedly attack clusters
of nearby targets because local vulnerabilities are well known to
the offenders (Bernasco and Nieuwbeerta 2005). A gang shoot-
ing may incite waves of retaliatory violence in the local set
space (territory) of the rival gang (Tita and Ridgeway 2007;
Cohen and Tita 1999). The local, contagious spread of crime
leads to the formation of crime clusters in space and time.

Similarly, the occurrence of an earthquake is well known to
increase the likelihood of another earthquake nearby in space
and time. For example, we plot in Figure 1 a histogram of the
times between “nearby earthquakes,” pairs of earthquake events
separated in space by 110 kilometers or less, for all recorded
earthquakes of magnitude 3.0 or greater in Southern California
during 2004–2005. The histogram shows a spike at short times,
indicating an increased likelihood of another event in the days
following each earthquake. For a stationary Poisson process the
distribution of times between pairs of events would be approx-
imately uniform when the length of the time window is much
larger than the longest time bin of the histogram.

In the case of residential burglary, evidence indicates that
an elevated risk exists for both a house that has been recently
burgled and its neighboring houses (Farrell and Pease 2001;
Johnson et al. 2007; Short et al. 2009). To illustrate this point
further, we plot in Figure 1 a histogram of the times between
“nearby burglaries,” residential burglaries separated in space by
200 meters or less, for all recorded residential burglaries within
an 18 km by 18 km region of the San Fernando Valley in Los
Angeles during 2004–2005. Again we observe a spike at short
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times, indicating an increased likelihood of victimization within
a few hundred meters and several days of each burglary.

Self-excitation is also found in gang violence data, as an
event involving rival gangs can lead to retaliatory acts of vi-
olence. In Figure 2, we plot the times of all recorded violent
crimes between the gang known as “Locke Street” and the ri-
val gang known as “Lowell Street” occurring between 2000 and
2002 in the Los Angeles police district of Hollenbeck. Here we
observe clear clustering patterns suggestive of self-excitation in
the rate at which the two rival gangs attack each other.

We propose that self-exciting point processes can be adapted
for the purpose of crime modeling and are well suited to cap-
ture the spatial-temporal clustering patterns observed in crime
data. More specifically, spatial heterogeneity in crime rates can
be treated using background intensity estimation and the self-
exciting effects detected in crime data can be modeled with a
variety of kernels developed for seismological applications or
using nonparametric methods. In Section 2, we review self-
exciting point processes in the context of seismological mod-
eling. In Section 3, we present a model for residential bur-
glary based upon nonparametric methods for Epidemic Type
Aftershock-Sequences models of earthquakes. Our methodol-
ogy combines the idea of stochastic declustering with Kernel
Density Estimation in a novel way. In Section 5, we compare
the predictive accuracy of our methodology with prospective
crime hotspot maps. The results illustrate how crime hotspot
maps can be improved using the self-exciting point process
framework. We validate the methodology with a simulated
point process in the Appendix.

2. SELF–EXCITING POINT PROCESS MODELS
IN SEISMOLOGY

A space–time point process N(t, x, y) is typically character-
ized via its conditional intensity λ(t, x, y), which may be de-
fined as the limiting expected rate of the accumulation of points
around a particular spatial-temporal location, given the history
Ht of all points up to time t (Daley and Vere-Jones 2003):

λ(t, x, y) = lim
�t,�x,�y↓0

(
E
[
N{(t, t + �t) × (x, x + �x)

× (y, y + �y)}|Ht
]
/(�t�x�y)

)
. (1)
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Figure 1. On the left, histogram of times (less than 300 days) between Southern California earthquake events of magnitude 3.0 or greater
separated by 110 kilometers or less. On the right, histogram of times (less than 50 days) between burglary events separated by 200 meters or
less.

In seismology a mark Mk, the magnitude of the earthquake, is
associated with each event (tk, xk, yk) and the conditional inten-
sity often takes the form

λ(t, x, y,M) = j(M)λ(t, x, y), (2)

λ(t, x, y) = μ(x, y)

+
∑

{k:tk<t}
g(t − tk, x − xk, y − yk;Mk). (3)

Models of this type, referred to as Epidemic Type Aftershock-
Sequences (ETAS) models, work by dividing earthquakes into
two categories, background events and aftershock events. Back-
ground events occur independently according to a stationary
Poisson process μ(x, y), with magnitudes distributed indepen-
dently of μ according to j(M). Each of these earthquakes then
elevates the risk of aftershocks and the elevated risk spreads in
space and time according to the kernel g(t, x, y,M).

Figure 2. Times of violent crimes between two rivalry gangs in Los
Angeles.

Many forms for g have been proposed in the literature,
though in general the kernel is chosen such that the elevated risk
increases with earthquake magnitude and decreases in space
and time away from each event. For example, the isotropic ker-
nel,

g(t, x, y;M) = K0

(t + c)p
· eα(M−M0)

(x2 + y2 + d)q
, (4)

is one of a variety of kernels reviewed in Ogata (1998). Here
K0, M0, and α are parameters that control the number of after-
shocks, c and d are parameters that control the behavior of the
kernel at the origin, and p and q are parameters that give the
(power law) rate of decay of g.

Standard models for the background intensity μ(x, y) include
spline, kernel smoothing, and Voronoi estimation (Silverman
1986; Ogata and Katsura 1988; Okabe et al. 2000). In the case
of fixed bandwidth kernel smoothing, the background intensity
is estimated by

μ(x, y) = μ ·
∑

k

u(x − xk, y − yk;σ), (5)

where μ is a parameter controlling the overall background rate.
The events (tk, xk, yk,Mk) are assumed to be background events
and in practice can be obtained through a declustering algo-
rithm (Zhuang, Ogata, and Vere-Jones 2002).

The appropriate selection of parameter values is as critical
to the modeling process as specifying accurate forms for μ,
g, and j. The distance in space and time over which the risk
spreads, the percentage of background events vs. aftershocks,
the dependence of the increased risk on magnitude size, etc.,
all can have a great impact on the predictive power of a point
process model. Parameter selection for ETAS models is most
commonly accomplished through maximum likelihood estima-
tion, where the log-likelihood function (Daley and Vere-Jones
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2003),

l(θ) =
∑

k

log{λ(tk, xk, yk; θ)}

−
∫ T

0

∫ ∫
S
λ(t, x, y; θ)dy dx dt, (6)

is maximized over all parameter sets θ . Here S × [0,T] is the
space–time window of observation.

More recently, nonparametric methods have been intro-
duced for self-exciting point process estimation (Zhuang 2006;
Marsan and Lenglin 2008). Consider space–time point data
{(tk, xk, yk)}N

k=1 and a general self-exciting point process model
of the form

λ(t, x, y) = μ(t, x, y) +
∑

{k:tk<t}
g(t − tk, x − xk, y − yk). (7)

Assuming model correctness, the probability that event i is a
background event, pii, is given by

pii = μ(ti, xi, yi)

λ(ti, xi, yi)
(8)

and the probability that event j triggered event i, pji, is given by

pji = g(ti − tj, xi − xj, yi − yj)

λ(ti, xi, yi)
(9)

(Zhuang, Ogata, and Vere-Jones 2002). Let P denote the matrix
with entries pji (note that the columns sum to one). Then sto-
chastic declustering can be used in the following way. Given
an initial guess P0 of the matrix P, we then have N(N +
1)/2 probabilistic data points {(tk, xk, yk,pkk)}N

k=1 and {(ti −
tj, xi − xj, yi − yj,pji)}i>j. Given this data, a nonparametric
density estimation procedure can be used to estimate μ from
{(tk, xk, yk,pkk)}N

k=1 and g from {(ti − tj, xi − xj, yi − yj,pji)}i>j,
providing estimates μ0 and g0. We can then proceed iteratively
as follows until convergence is achieved:

Step 1. Estimate μn and gn from Pn−1.
Step 2. Update Pn from μn and gn using (8) and (9).

For example, a simple histogram estimator is used in Marsan
and Lenglin (2008) in step 1.

3. A SELF–EXCITING POINT PROCESS
MODEL OF BURGLARY

For the purpose of modeling burglary we consider an un-
marked self-exciting model for the conditional intensity of the
form

λ(t, x, y) = ν(t)μ(x, y)+
∑

{k:tk<t}
g(t− tk, x−xk, y−yk). (10)

Here we neglect spatially localized temporal fluctuations in the
background rate and assume that the fluctuations occur globally
(e.g., due to weather, seasonality, time of day, etc.) In the case
of seismology, research over a number of decades was needed
to refine the (parametric) form of the triggering function g. For
this reason, nonparametric methods are appealing in the con-
text of crime in order to quickly gain insight into the forms of
ν, μ, and g. For this purpose we use the iterative procedure out-
lined in the previous section to estimate the model, with several
modifications.

Because the probabilistic data {(tk, xk, yk,pkk)}N
k=1 and {(ti −

tj, xi −xj, yi −yj,pji)}i>j is both three-dimensional and the num-
ber of data points is O(N2) [where N is typically O(1000) for
earthquake and crime datasets], the estimation step for μ and
g is computationally expensive. The dimensionality prevents
straightforward use of binning methods such as the Average
Shifted Histogram (Marsan and Lenglin use a logarithmically
scaled histogram on a coarse grid), as many bins may have ex-
tremely small, but nonzero, values (since the data is probabilis-
tic, the count in each bin can be less than 1). Alternatively, the
large size of the data set prevents efficient use of off-grid meth-
ods such as Kernel Density Estimation. To get around these is-
sues we use the following Monte Carlo-based iterative proce-
dure:

Step 1. Sample background events {(tbi , xb
i , yb

i )}Nb
i=1 and off-

spring/parent interpoint distances {(toi , xo
i , yo

i )}No
i=1 from Pn−1.

Step 2. Estimate νn, μn and gn from the sampled data using
variable bandwidth Kernel Density Estimation.

Step 3. Update Pn from νn, μn and gn using (8) and (9).

Because Nb + No = N, the size of the sampled data at each
iteration allows for the use of Kernel Density Estimation. An-
other issue is that the number of background and offspring
events, Nb and No, is changing at each iteration. Thus a fixed
bandwidth for any density estimation technique (kernel smooth-
ing, histogram, etc.) will over-smooth at some iterations and
under-smooth at others. Therefore we employ variable band-
width KDE (alternatively Cross Validation could be used). We
give further details of our approach and provide validation us-
ing a simulated point process in the Appendix.

4. RESULTS

We fit the model given by Equation (10) to a dataset collected
by the Los Angeles Police Department of 5376 reported resi-
dential burglaries in an 18 km by 18 km region of the San Fer-
nando Valley in Los Angeles occurring during the years 2004
and 2005. Each burglary is associated with a reported time win-
dow over which it could have occurred, often a few hour span
(for instance, the time span over which a victim was at work),
and we define the time of burglary to be the midpoint of each
burglary window.

In Figure 3, we plot the sampled interpoint distances {(toi , xo
i ,

yo
i )}No

i=1 on the 75th iteration of the stochastic declustering al-
gorithm (see Appendix for convergence verification). The num-
ber of sampled (offspring) events is 706 (13.1% of all events)
and of these events approximately 63% are exact repeats (oc-
curring at the same house). On the left, the spatial interpoint
distances are plotted showing that elevated crime risk travels
around 50 m–100 m from the house of an initial burglary to
the location of direct offspring events. As discussed in Marsan
and Lenglin (2008), the overall distance near-repeat risk travels
is several times further due to the cascading property of self-
exciting point processes. Note also that the risk travels verti-
cally and horizontally (along streets), more so than it does in
other directions. On the right, we plot the spatial (x-coordinate)
interpoint distances against the time interpoint distances. Here
exact-repeat burglaries, those occurring at the same house, are
apparent along the x-axis.
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Figure 3. Spatial (left) and space–time (right) offspring/parent interpoint distances {(toi , xo
i , yo

i )}No
i=1 sampled from P75.

In Figure 4, we plot (on a logarithmic scale) the estimated
marginals

g75(t) =
∫

x

∫
y

g75(t, x, y)dx dy

and

g75(x) =
∫

t

∫
y

g75(t, x, y)dy dt

computed from the KDE estimate of g at the 75th iteration. Here
the presence of exact-repeat events can again be seen, as g75(x)
appears to approximate a delta distribution at the origin. The
spike around 1–2 days in the plot of g75(t) is due to the pres-
ence of fast “crime sprees,” where most likely the same burglar
visited several neighboring houses within a time span of a few
minutes to several days. There are also several bumps in the el-
evated risk of burglary, for example, around 7 days. Here one

possible explanation is that the routine of the burglar and/or
the victim is such that a particular day of the week is a prefer-
able time to commit the burglary. After 7–10 days, the elevated
risk of repeat/near-repeat victimization drops to an intermedi-
ate level and stays relatively flat for a time span on the order
of several hundred days before decaying back to baseline rates.
These results are consistent with previous quantitative studies
of exact-repeat burglaries (Short et al. 2009).

In Johnson (2008), the authors discuss the need to model
risk heterogeneity and in general it is a difficult task to sepa-
rate clustering due to background heterogeneity and clustering
due to self-excitation. One benefit of using the nonparametric
approach outlined above is that temporal and spatial changes
in the rate of crime are automatically separated into those stem-
ming from exogenous effects and those due to self-excitation. In
Figure 5, we plot the estimated marginals ν75(t) and μ75(x, y)
estimated using KDE from {(tbi , xb

i , yb
i )}Nb

i=1 at the 75th iteration.

Figure 4. Marginal g75(t) (left) and marginal g75(x) (right) estimated using KDE based upon offspring/parent interpoint distances sampled
from P75.
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Figure 5. Background rate time marginal ν75(t) (left) and space marginal μ75(x, y) (right) estimated using KDE from the background events
sampled from P75.

Here the estimated background rate exhibits temporal fluctua-
tions on a time scale of months/days, separate from the fluctua-
tions due to self-excitation. These fluctuations are likely caused
by a number of factors such as seasonal, economic, and demo-
graphic changes, as well as temporal variations in burglar rou-
tine activities (Felson 1998). For example, residential burglary
tends to have a higher weekday rate (when victims are at work)
compared to weekends.

Similarly, the background rate is also spatially variable,
which is consistent with fixed environmental heterogeneity in
crime opportunities, as well as variability in population density
through space (Bernasco and Nieuwbeerta 2005). In seismol-
ogy, declustered catalogs are of great interest as they can be
used in estimating the background rate of major earthquakes.
Declustered crime catalogs could potentially be used by police
to distinguish between areas of a city with intrinsically high
crime rates and areas with temporarily high crime rates (due to
near-repeat effects). As the former arises due to structural prop-
erties of a given neighborhood and the latter from behavioral
characteristics of individual burglars, police and community re-
sponses would likely need to be different in each case.

5. CRIME FORECASTING: POINT PROCESSES
VERSUS HOTSPOT MAPS

Crime hotspot maps are a well-established tool for visualiza-
tion of space–time crime patterns and can be used as a method
for prediction of near-repeat crimes. Given space–time crime
observations (tk, xk, yk), crime hotspot maps are generated for a
time interval [t − T, t] by overlaying a density plot of the func-
tion,

λ(t, x, y) =
∑

t−T<tk<t

g(t − tk, x − xk, y − yk), (11)

onto a city map, where g(t, x, y) is a space–time kernel. By flag-
ging the areas of the city where λ takes on its highest values,
crime hotspot maps can be used to indicate which areas in the

city are likely to contain future crimes (Bowers, Johnson, and
Pease 2004; Chainey, Tompson, and Uhlig 2008).

For example, in Bowers, Johnson, and Pease (2004) a coarse
grained kernel is used that decays inversely proportional to spa-
tial and temporal distance. In particular, with spatial distance
d in units of 1/2 cell widths and time t in units of weeks, the
kernel in (11) is specified as

g(t,d) = 1

(1 + t)(1 + d)
(12)

on the domain (t,d) ∈ [0,2 months] × [0,400 meters] and 0
otherwise. Such a crime hotspot map is referred to as “prospec-
tive,” as it uses past crimes, coupled with the contagious spread
of crime (modeled by g), to estimate future relative crime risk
across the city. It should be noted that the risk is relative because
(11) is not a point process intensity.

Here we compare the predictive accuracy of the self-exciting
point process model developed in Section 3 to the prospective
crime hotspot map given by (11)–(12). Because crime is local-
ized in small regions of the city (a commercial zone with no res-
idential burglary may be located 100 meters from a neighbor-
hood), we find that for predictive purposes variable bandwidth
KDE is less accurate than fixed bandwidth KDE. We there-
fore estimate μ(x, y) in Equation (10) using fixed bandwidth
Gaussian KDE, with 20-fold cross validation used to select the
bandwidth (Silverman 1986).

For every day k of 2005, each model assesses the risk of bur-
glary within each of M2 cells partitioning an 18 km by 18 km
region of the San Fernando Valley in Los Angeles. Based on the
data from the beginning of 2004 up through day k, the N cells
with the highest risk (value of λ) are flagged yielding a predic-
tion for day k + 1. The percentage of crimes falling within the
flagged cells on day k + 1 is then recorded and used to measure
the accuracy of each model.

In Figure 6, on the left we plot the percentage of crimes
predicted averaged over the forecasting year against the per-
centage of flagged cells for the self-exciting point process and
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Figure 6. Forecasting strategy comparison. Average daily percentage of crimes predicted plotted against percentage of cells flagged for 2005
burglary using 200 m by 200 m cells. Error bars correspond to the standard error. Prospective hotspot cutoff parameters are 400 meters and 8
weeks (left) and optimal parameters (right) are 200 meters and 39 weeks. Spatial background intensity μ(x, y) smoothing bandwidth for the
point process is 300 meters (left) selected by cross validation and 130 meters (right) selected to optimize the number of crimes predicted.

the prospective hotspot strategy. For example, with 10% of
the city flagged the point process and prospective hotspot cor-
rectly predict 660 and 547 crimes (respectively) out of 2627.
The difference in accuracy between the two methodologies can
be attributed to the crime hotspot map’s failure to account for
the background rate of crime. While prospective crime hotspot
maps used for crime prediction attempt to quantify the conta-
gious spread of crime following past events, they fail to assess
the likelihood of future “background” events, the initial events
that trigger crime clusters.

In order to disentangle the dependence of model accuracy on
parameter selection, in Figure 6 on the right we repeat the same
prediction exercise but with parameters of each model selected
to yield the highest number of crimes predicted (L1 norm over
1 through 15% of cells flagged). The optimal cutoff parameters
for the prospective hotspot map are 200 meters and 39 weeks.
With these parameter values, in particular the slow decay of g
in time, Equation (11) is closer to Poisson estimation. For the
point process model we only optimize the bandwidth used for
μ(x, y) as the computational cost of the stochastic decluster-
ing algorithm is relatively high. Whereas the bandwidth is esti-
mated to be approximately 300 meters using cross validation, a
smaller bandwidth, 130 meters, provides a higher level of pre-
dictive accuracy. This can be attributed to the spatially localized
features of neighborhoods, and hence burglary.

For all percentages of cells flagged the prospective hotspot
map underperforms the point process, though for certain per-
centages the relative underperformance is less. On the left in
Figure 6, the prospective hotspot map performs better (relative
to the point process) for smaller percentages of cells flagged, as
the parameters are selected to account for near-repeat effects.
On the right, the prospective hotspot map performs better for
larger percentages of flagged cells, since for these parameter
values the model is more accurately estimating fixed environ-
mental heterogeneity. For crime types such as robbery and auto

theft, where near-repeat effects play less of a role, prospective
hotspot maps tailored for near-repeat effects are likely to be
outperformed by simple Poisson estimation. The advantage of
models of the form (10) is that the balance between exogenous
and endogenous contributions to crime rates is inferred from
the data as opposed to being imposed a priori.

6. DISCUSSION

We showed how self-exciting point processes from seismol-
ogy can be used for the purpose of crime modeling. In the fu-
ture it may be desirable to tailor point process models specifi-
cally for crime, taking into account the crime type and the lo-
cal geography of the city. Based upon the insights provided by
nonparametric estimates, parametric models can be constructed
that have advantages with respect to model fitting and simula-
tion. Background rates can also be improved by incorporating
other data types (in Johnson 2008, housing density is used to
improve models of repeat victimization). In the case of gang
violence, a hybrid network-point process approach may be use-
ful for capturing the self-exciting effects stemming from gang
retaliations. Here increased risk may not diffuse in geographic
space, but instead may travel through the network space of gang
rivalry relations.

The methodology used in this study can be implemented for
other applications as well, for example refining point process
models of earthquakes. It could potentially be adapted, more
generally, to other second-order models of point processes.
The stochastic declustering algorithm opens up the door to
a plethora of density estimation techniques (Silverman 1986;
Scott 1992; Eggermont and LaRiccia 2001) that could be used
to explore point processes in a way parametric methods do not
allow.

In Marsan and Lenglin (2010) it is shown that the method
is an Expectation-Maximization (EM) type algorithm. At the
maximization step the complete data log-likelihood function
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decouples in terms of the background and triggering functions,
which is why at each iteration the problem reduces to several
decoupled density estimation problems. Several issues could
potentially arise here, one being that the method could con-
verge to a local (but not global) minimum of the observed data
log-likelihood function. Another, as pointed out in Sornette and
Utkin (2009), is that the sample size and domain size (relative
to the support of the triggering kernel) play a key role in the
accuracy of stochastic declustering. In numerical tests we have
found that at least O(1000) data points are needed in three di-
mensions for the iterates to converge to the right densities and
the domain needs to be several times larger than the support
of the triggering kernel. Similar to analytical results for stan-
dard density estimation, it would be useful to have convergence
results relating sample size, branching ratio, domain size, and
the bandwidth of the density estimators to the solution of the
fixed-point iteration.

APPENDIX

Given point data (tk, xk, yk)
N
k=1 and a self-exciting point process

model of the form,

λ(t, x, y) = ν(t)μ(x, y) +
∑

{k: tk<t}
g(t − tk, x − xk, y − yk), (A.1)

we iterate the following until convergence:

Step 1. Sample background events {(tbi , xb
i , yb

i )}Nb
i=1 and offspring/

parent interpoint distances {(toi , xo
i , yo

i )}No
i=1 from Pn−1.

Step 2. Estimate νn, μn, and gn from the sampled data.
Step 3. Update Pn from νn, μn, and gn using (8) and (9).

In order to estimate νn, μn, and gn from the sampled data, we use
variable bandwidth Kernel Density Estimation. To estimate gn, we first
scale the data {(toi , xo

i , yo
i )}No

i=1 to have unit variance in each coordinate
and based upon the rescaled data compute Di, the kth nearest neighbor
distance (three-dimensional Euclidean distance) to data point i. We
then transform the data back to its original scale and, letting σx, σy,

Figure A.1. L2 error ‖Pn − Pn−1‖2 (top left) and Nb, the number of sampled background events, (top right) at the nth iteration for known
point process model. L2 error ‖Pn − Pn−1‖2 (bottom left) and Nb, the number of sampled background events, (bottom right) at the nth iteration
for the method applied to the 5376 burglary events in Section 3.
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and σt be the sample standard deviation of each coordinate, estimate
the triggering function as

gn(t, x, y) = 1

N

No∑
i=1

1

σxσyσt(2π)(3/2)D3
i

× exp

(
− (x − xo

i )2

2σ 2
x D2

i

− (y − yo
i )2

2σ 2
y D2

i

− (t − toi )2

2σ 2
t D2

i

)
.

The background rate is estimated similarly, where one-dimensional
and two-dimenional Gaussian kernels are used to estimate νn and μn,
respectively. In Zhuang, Ogata, and Vere-Jones (2002), the authors rec-
ommending using the 10th–100th nearest neighbor distance for Di.
Throughout we compute Di corresponding to ν using the 100th near-
est neighbor distance and in higher dimensions we use the 15th nearest
neighbor distance for Di corresponding to μ and g.

We validate the method by simulating (A.1) with

ν(t)μ(x, y) = μ

(2π)(4.5)2
exp

(
− x2

2(4.5)2

)
exp

(
− y2

2(4.5)2

)

and

g(t, x, y) = θω exp(−ωt) exp

(
− x2

2σ 2
x

)
exp

(
− y2

2σ 2
y

)

and comparing the estimates supplied by the method with the known
distribution. The simulation was carried out by first simulating all
background events according to the Poisson process νμ. The rest of the
simulation was carried out iteratively, where each point of each gen-
eration generates its own offspring according to the Poisson process
g centered at the parent point. The process terminates at the nth gen-
eration when all events of the nth generation lie outside of the time
window under consideration. In order to have a realization of the point
process at steady state, the first and last 2000 points were disregarded
in each simulation.

In Figure A.1, we plot the L2 error ‖Pn − Pn−1‖2 at the nth it-
eration and the number of sampled background events Nb at the nth
iteration against the true number of background events for one real-
ization of the known point process. Here we observe that the error
converges quickly for the first 10 iterations and then stabilizes as the
error introduced by estimating the point process through sampling P
cannot be reduced further (unless a deterministic iterative procedure
is employed). We also verify that the method applied to the 5376 bur-
glary events in Section 3 reached convergence in Figure A.1. Here we
observe a similar rate of convergence for the crime data as with the
simulated point process.

In Table A.1, we list the exact parameter values used for the simu-
lated point process and the estimates averaged over the final 10 itera-
tions of the stochastic declustering algorithm for each of five simula-
tions of the point process. The parameter values were selected to yield
point patterns with scales similar to those observed in crime data. The
parameter estimates are computed using the sample variances of the
coordinates of {(toi , xo

i , yo
i )}No

i=1 and the values of Nb, No. As some er-
ror is due to sample variation, we plot in the last two columns the

Table A.1. Parameter value estimates

w−1 σx σy θ μ Nb est. Nb true

True values 10.00 0.0100 0.1000 0.2000 5.7100

Run 1 est. 11.08 0.0176 0.1433 0.2001 5.6921 3999.7 4041
Run 2 est. 12.20 0.0156 0.1296 0.1967 5.7768 4016.5 4026
Run 3 est. 11.76 0.0150 0.1295 0.1997 5.6711 4001.5 4017
Run 4 est. 13.30 0.0135 0.1407 0.2049 5.6185 3975.3 4015
Run 5 est. 11.27 0.0147 0.1317 0.2102 5.7652 3948.9 3977

estimated number of background events versus the actual number of
background events in each of the five simulations to assess the abil-
ity of the method to reconstruct the realized branching structure. In
Figure A.2, we plot the estimated marginals of g(t, x, y) against the

Figure A.2. Estimated (circles) and actual (solid line) marginals of
g(t, x, y) on the 75th iteration. Top is the marginal g(x), in the middle
is the marginal g(y), and lower figure is marginal g(t).
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actual distributions on the 75th iteration of the stochastic declustering
algorithm. The estimated time marginal density deviates from the true
density at the origin due to the jump discontinuity of the exponential
distribution. However, the estimate of the parameter ω is still close to
the true value (see Table A.1).

[Received September 2009. Revised October 2010.]
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