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The mechanisms driving the nucleation, spread, and dissipation of
crime hotspots are poorly understood. As a consequence, the abil-
ity of law enforcement agencies to use mapped crime patterns to
design crime prevention strategies is severely hampered. We also
lack robust expectations about how different policing interven-
tions should impact crime. Here we present a mathematical frame-
work based on reaction-diffusion partial differential equations for
studying the dynamics of crime hotspots. The system of equations
is based on empirical evidence for how offenders move and mix
with potential victims or targets. Analysis shows that crime hot-
spots form when the enhanced risk of repeat crimes diffuses
locally, but not so far as to bind distant crime together. Crime hot-
spots may form as either supercritical or subcritical bifurcations,
the latter the result of large spikes in crime that override linearly
stable, uniform crime distributions. Our mathematical methods
show that subcritical crime hotspots may be permanently eradi-
cated with police suppression, whereas supercritical hotspots are
displaced following a characteristic spatial pattern. Our results thus
provide a mechanistic explanation for recent failures to observe
crime displacement in experimental field tests of hotspot policing.

crime pattern formation ∣ hotspot policing ∣ mathematical modeling ∣
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Crime is a ubiquitous feature of all modern cities, but not all
neighborhoods are affected equally. In fact, serious crimes

ranging from residential burglary to homicide are strongly pat-
terned in time and space, forming crime “hotspots” (1–3). Studies
show that policing actions directed at crime hotspots do lead to
real reductions in offending and calls to the police for service (4, 5),
while displacement of crime to adjacent settings may be less com-
mon than once thought (6–8). However, further gains in crime re-
duction are dependent upon gaining a quantitative understanding
of the mechanisms that drive the emergence, spread, and dissipa-
tion of crime hotspots. Reaction-diffusion models, in which acti-
vators and inhibitors move, mix, and interact, provide a useful
framework in which to investigate the formation of crime patterns
and the impact of alternative policing strategies on crime hotspot
stability. In this context, motivated offenders (activators) search
their environment for suitable targets or victims (activators),
which may also be mobile, following simple behavioral routines
(9, 10). If an offender encounters a target in the absence of an ef-
fective security measure (inhibitor), then he is free to exploit that
target. The immediate presence of security such as law enforce-
ment is sufficient to deter that crime. Here we show that large-
scale spatial crime patterns, including the formation of stationary
crime hotspots, are strongly dependent upon the local diffusion of
risk, driven by offender mobility in the environment, coupled with
the phenomena of repeat and near repeat victimization.

Model
We study a reaction-diffusion system involving mobile criminal
offenders within a square environment with periodic boundary
conditions (11). Potential crime targets such as homes, automo-
biles, or persons, depending on crime type, are continuously dis-

tributed in space, and each location x ¼ ðx; yÞ is characterized by a
risk of victimization, defined as a field Aðx; tÞ, representing
general environmental cues about the feasibility of committing
a successful crime (12–15) and/or specific knowledge offenders
possess about target or victim vulnerability in the area (16–18).
While Aðx; tÞ is easiest to conceptualize in reference to stationary
targets (such as homes in the case of burglary), it may also be used
to represent the risk of attacks on mobile victims at any given
spatial location (19, 20). Our model and its results are therefore
independent of crime type.

Risk is the sum of a fixed component A0ðxÞ, which is stationary
in time but potentially variable in space, and a dynamic compo-
nent Bðx; tÞ, which evolves in time according to

∂B
∂t

¼ ηD∇2B − ωBþ κρA; [1]

where ρðxÞ is the density of criminal agents. The parameter κ
measures the growth in risk at location x given crimes occurring
there at a rate per unit area ρA. Thus, κ is an attractive force pull-
ing offenders back to locations where they have successfully com-
mitted crimes, a dynamic inferred from empirical evidence for
repeat crimes being concentrated in time shortly after the initial
event (Fig. 1A) (SI Empirical Crime Data) (21–23). The para-
meter ω determines the rate at which the elevated risk decays
towards the fixed environmental value A0ðxÞ, which generally oc-
curs within days to weeks depending upon crime type (Fig. 1A).
Finally,D, a diffusion coefficient, and η ∈ ½0; 1� control the rate of
diffusive spread of crime risk within the local environment, de-
scribing a so-called “near repeat” phenomenon whereby targets
within several hundred meters of an initial crime are more likely
to be victimized than by chance (Fig. 1B) (19, 21, 24).

We assume that offenders search for criminal opportunities in
the local environments surrounding the key activity nodes in their
daily routines; these may include home, work, or recreation sites
(Fig. 1C) (25–27). Offenders also preferentially select vulnerable
targets, i.e., those with high associated riskAðx; tÞ, usually to mini-
mize the danger of capture or confrontation (16, 17, 28, 29). Thus
the density of criminal offenders ρ at a spatial location x evolves
according to

∂ρ
∂t

¼ D ~∇ · ½ ~∇ρ − 2ρ ~∇ lnA� − ρAþ γ; [2]

where ~∇ is the gradient operator. Offenders move up gradients of
lnA, but simply diffuse in the absence of a risk gradient. They
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thus seek out and victimize targets at greater risk whenever such
differences are present in the environment. Offenders also exit
the system at rate ρA, following commission of crimes, and are
introduced at a constant, but possibly spatially variable, rate
per unit area γ.

Results
Eqs. 1 and 2 are coupled partial differential equations (PDEs)
describing the space-time coevolution of crime risk and offender
populations. We are interested in the conditions that cause the
risk of crime, B, to be nonuniformly distributed in space. Linear
stability analysis shows in fact that crime risk will form dense,
well-spaced hotspots whenever the diffusion of the risk produced
by individual crimes is spatially broad enough to bind local crimes
together, but not so extensive that distant crimes are also con-
nected (11). A schematic illustration of the mechanism driving
crime pattern formation is shown in Fig. 2. Individual crimes
are uniquely associated with a local spatial region conceptually
similar to a Voronoi polygon, an area parametrically defined
as Cω∕γ (Fig. 2A). The inverse of this term is the average density
of crime. The diffusion of risk from focal crime sites to nearby
spatial locations defines a second spatial region that we term
the “area of influence” of a crime given by ηκ∕ω (see Fig. 1B).
Crime hotspots will not emerge if the areas of influence of indi-
vidual crimes do not overlap and therefore do not form risk clus-
ters (i.e., ηκ∕ω < Clω∕γ) (Fig. 2A), or conversely, if the areas of
influence of individual crimes overlap with many others spreading
risk evenly through the urban environment (i.e., ηκ∕ω > Chω∕γ)
(Fig. 2B). Thus, crime hotspots will emerge whenever
Clω∕γ < ηκ∕ω < Chω∕γ (Fig. 2C). The conditions necessary
for crime hotspots to form hinge on the geographic nature of of-
fender foraging behavior and underscore the importance of spa-
tially restricted offender search in spreading risk in local
neighborhoods (see Fig. 1C) (29, 30). Numerical integration of
Eqs. 1 and 2 (see SI Methods) confirms that hotspots do not form
when the diffusion of risk is either spatially restricted or spa-
tially expansive (Fig. 2D) but do emerge with a distinct spatial
scale set by the maximally unstable wavelength λ� ¼ 2π∕jk�j
otherwise (Fig. 2E).

Weakly nonlinear analysis shows, however, that crime hotspots
may arise as both supercritical and subcritical bifurcations,
or large qualitative shifts from the homogeneous steady state
(Fig. 3A). Supercritical bifurcations (ε > 0 in Fig. 3A) see the nu-
cleation and growth of crime hotspots from small spikes in crime
due to the linear instability of the system, whereas subcritical bi-
furcations (ε < 0 in Fig. 3A) are the result of large local spikes in
crime that override linear stability. Referring to Fig. 2A, for ex-
ample, crimes are sufficiently spaced such that the area of influ-
ence of a single crime generally does not overlap with that of
others and the system is linearly stable with a spatially uniform
crime distribution. If one location were to experience a sudden
and extreme surge in crime, however, then the increased risk may
suddenly spill over into the area of influence of an adjacent crime
binding those areas together to create a subcritical hotspot. Al-
ternatively, even where all crimes are bound together by the
broad spatial diffusion of risk (Fig. 2B), a large surge in crime
at one location may create a nucleation point pulling offenders
away from a uniform distribution and causing a subcritical crime
hotspot to emerge.

One of our key results is that subcritical hotspots may form
under a wide array of conditions, paralleling those that form
supercritical hotspots (Fig. 3B). The parameter combination ηB̄
describes the dynamic component of crime risk, approximately
the probability of repeat victimization occurring at any given lo-
cation. The variable ηA0 describes the fixed environmental risk of
crime, approximately the probability of crimes occurring inde-
pendently in space and time as a result of a stationary Poisson
process. Small values of ηA0 describe environments characterized

Fig. 1. Spatio-temporal patterns of criminal behavior. Criminal offenders
are more likely to return to the same and/or nearby locations to commit
repeat crimes. Here we illustrate this fact through the specific example of
single-family residential burglary, using data from Long Beach, California,
over the years 2000–2005 (SI Empirical Crime Data). (A) The probability of
observing a time separation of τ days between events at individual residences
burgled exactly twice within a fixed temporal window of D ¼ 364 days. We
compare the observed distribution with an expected distribution of repeat
crimes assuming they are Poisson distributed in time: p2ðτÞ ¼ 2ðD − τÞ∕
DðDþ 1Þ (21). Repeat burglaries are much more likely to occur in the four
weeks following the initial event than by chance, suggesting that burglars
are biased to return to the same locations because of unique environmental
cues and/or specific knowledge gained in the first burglary. (B) Repeat
burglary probability in the two weeks following an initial crime as a function
of distance from the initial crime. The Poisson expectation is calculated as
p2ðτ ≤ 14Þ ¼ ∑14

τ¼1 2ðD − τÞ∕DðDþ 1Þ. Burglaries occurring within two weeks
of one another separated by more than approximately 2000 m are statisti-
cally independent (Poisson), whereas those that are closer to one another in
space show strong spatial dependency; the interpretation is that the initial
burglary increases the likelihood that neighbors are also victimized. Crime
risk therefore spreads spatially up to distances≤2000 m (dashed line). Similar
repeat and near-repeat victimization dynamics are recognized for shootings
(19) and insurgent attacks (23), indicating that these are generic features of a
wide range of crime types. (C) Journey-to-crime distribution for residential
burglars measured as the distance in kilometers from the offender’s resi-
dence to the site of a burglary. Most offenders search for targets in the im-
mediate vicinity of home, a key activity node in their daily routine.
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by very low fixed environmental risk. Small spikes in crime are
easily distinguished against this background and nucleate into
supercritical hotspots. As ηA0 increases, environments become
inherently more risky and the range of values for the dynamic
component of risk generating supercritical hotspots contracts.
With further increases in ηA0 the system crosses a threshold into
linear stability. At this point, small spikes in crime are insufficient
to generate crime hotspots. Note, however, that for each value of
ηB̄ capable of generating supercritical hotspots there are values of

ηA0 describing marginally stable environments that nonetheless
will support subcritical hotspots given a large enough spike in
crime. The implication is that subcritical hotspots may be com-
mon in real urban settings, though the proportion of the para-
meter space shown in Fig. 3B that is behaviorally realistic is
not presently known.

Our analysis also shows that there may be significant geospatial
differences between supercritical and subcritical crime hotspots,
with important implications for the response to crime hotspots of

Fig. 3. Crime hotspot types. Crime hotspots form in both linearly unstable and stable regimes, with correspondingly different geospatial structures. (A) The
bifurcation diagram for the radially symmetric PDE systemwhere dashed lines represent unstable branches and solid lines are stable branches. The parameter ε
controls the stability of the system, with ε > 0 corresponding to linearly unstable systems and ε < 0 corresponding to linearly stable systems. Aampð∞Þmeasures
hotspot intensity. Supercritical hotspots (ε > 0) are formed by small perturbations in crime and approach stable “bump” or “ring” solutions, shown where
Aampð∞Þ > 0 and Aampð∞Þ < 0, respectively. Subcritical hotspots (ε < 0) are formed only by large perturbations in crime and show only a bump solution. The
expected responses of supercritical and subcritical hotspots under suppression are shown by arrows (see text for discussion). (B) Parameter space for the for-
mation of supercritical and subcritical crime hotspots for this same system. ηA0 is a measure of fixed (time-invariant) environmental risk, whereas ηB̄ represents
different equilibrium values for the dynamic component of risk. Parameter regimes generating subcritical crime hotspots form an envelope surrounding the
supercritical regimes suggesting that tipping of a linearly unstable regime into linear stability may still facilitate crime hotspot formation if crime events at
individual locations surge in size and/or frequency. Analysis in both cases is based on a system with ηk2� ¼ 0.2.

Fig. 2. The conditions for crime hotspot formation. Local diffusion of elevated risk from stochastic fluctuations in crime nucleate into crime hotspots. (A) Urban
space may be thought of as being partitioned into areas uniquely associated with each individual crime (black dots), here shown as Voronoi polygons (gray
lines) and described in the PDEmodel by average area Cω∕γ. Individual crimes also produce elevated risk that diffuses out over an area (dashed circles) centered
on the crime location and described in the PDE model by area ηκ∕ω. If the area encompassed by diffusing risk from one crime does not overlap with the area of
diffusing risk generated by another, then hotspots will not form and a spatially uniform, low equilibrium distribution of crime results. (B) If risk diffuses over a
wide area, it is homogenized in space, and a spatially uniform, high equilibrium distribution of crime results. (C) Only when risk diffuses over relatively short
distances, binding local crimes together but not more distant ones, do crime hotspots emerge. (D) and (E) Numerical simulations of the PDE system in a square
regionwith periodic boundary conditions. (D) Parameters are such that ηκ∕ω < Clω∕γ, or ηκ∕ω > Chω∕γ giving a stable uniform crime distribution. (E) Parameters
are such that Clω∕γ < ηκ∕ω < Chω∕γ giving stationary crime hotspots. The spacing of hotspots is determined by the maximally unstable wavelength λ� ¼ 2π∕jk�j.
Hotspots are measured as deviations from a spatially averaged equilibrium value B̄ ¼ κγ∕ω (green), with maximum risk being ≥2B̄ (red) and minimum risk
zero (purple).
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directed policing. Fig. 3A shows a bifurcation diagram for our sys-
tem in a radially symmetric geometry, where Aampð∞Þ is hotspot
intensity and ε is a parameter that allows us to examine how
system behavior changes as one moves from linearly unstable
to linearly stable parameter regimes (see SI Methods). There
are two spatial arrangements of crime patterns under linearly un-
stable conditions (ε > 0): a symmetrical “bump” solution (values
of Aampð∞Þ > 0) recognized as a traditional hotspot, and a “ring”
solution (values of Aampð∞Þ < 0). That crime patterns may form
“hot rings” around a location is assumed in many individual-scale
geographic profiling approaches to crime (31), but such patterns
are not typically mapped in aggregate crime distributions. Con-
versely, linearly stable regimes (ε < 0) exhibit only the bump so-
lution, which corresponds to a traditional hotspot pattern.

We furthermore expect supercritical and subcritical crime hot-
spots to respond differently to directed policing actions, such as
hotspot policing. Fig. 3A indicates that suppression of supercri-
tical crime hotspots, through police actions that drive the local
hotspot intensity Aampð∞Þ to zero, will first generate hot rings
that subsequently break up to form hotspots of the same size
and relative spatial arrangement as those prior to suppression.
Conversely, we expect that subcritical crime hotspots will be era-
dicated by directed police action that is strong enough to drive
Aampð∞Þ into the gray region below the unstable branch (dashed
line) of the solution shown in Fig. 3A, and that these spots will
remain suppressed even after the removal of police pressure until
such time as a large spike in crime overrides the linear stability of
the system to form a new hotspot. The key difference in outcomes
reflects the fact that focused hotspot suppression does not impact
the small, stochastic fluctuations in crime occurring throughout
the environment. In linearly unstable regimes, the small fluctua-
tions are expected to quickly nucleate into new supercritical hot-
spots, while in linearly stable regimes the expectation is that they
will not.

To test our theoretical expectations, we performed extensive
computer simulations involving suppression of both super-
critical and subcritical crime hotspots using the PDE model
(see SI Methods). Crime suppression is introduced after allowing

for the development of stable crime patterns using parameter
combinations known to be either supercritical or subcritical. Sup-
pression is modeled by instantaneously driving the crime rate
ρAðx; tÞ to zero at the locations of current crime hotspots and
maintaining this suppression for a fixed time period. In Fig. 4
we show that different types of crime hotspots respond differently
to suppression as predicted by theory. Suppression of supercriti-
cal hotspots only temporarily results in the disruption of the crime
pattern, with new hotspots emerging quickly to replace those sup-
pressed by simulated police action (Fig. 4A). Moreover, simula-
tions show clearly that suppression over the central area of a
crime hotspot drives the elevated risk into a ring surrounding
the area of suppression, corresponding to the ring solution in
our nonlinear analysis. The displaced hot ring then breaks up
to form independent hotspots of the stable bump solution in
the nonsymmetric case. Conversely, suppression of subcritical
crime hotspots does not produce displacement of crime into a
ring or any other structure (Fig. 4B) and, as expected, crime hot-
spots do not reemerge after the cessation of crime suppression in
this case.

Discussion
Our research has direct implications for the study of crime pat-
tern formation and the mechanistic impact of policing interven-
tions on crime. The deterministic models developed here suggest
that the empirically observed reductions in crime that follow im-
plementation of hotspot policing strategies (8, 32, 33) are not a
statistical artifact but rather may reflect suppression of crime risk
below some threshold level necessary to sustain a subcritical
crime hotspot. Crime should remain suppressed in such situations
even after the removal of law enforcement pressure, until such
time as a significant cluster of crimes pushes the system towards
instability. Conversely, our models also suggest that displacement
of crime should result from policing actions directed at supercriti-
cal hotspots, consistent with criminological theory (34, 35).
However, displacement is not commonly observed in empirical
tests of hotspot policing (5, 6, 8, 32).

Fig. 4. Crime hotspot suppression. Suppression results for the PDE systemwith parameters chosen to generate supercritical or subcritical crime hotspots (see SI
Methods). (A) Suppression of supercritical crime hotspots. Shown is the configuration of supercritical hotspots at timestep t ¼ 100, just prior to the introduction
of crime suppression. Crime suppression is then introduced over the area of each visible hotspot, leading to the eradication of the original hotspots but
corresponding increases in risk in neighboring regions, seen at t ¼ 120. The transient structure at t ¼ 120 resembles a hot ring solution surrounding the loca-
tion of the original central hotspot. By the time of the next suppression at t ¼ 200, a new steady state featuring hotspots in positions adjacent to the original
ones has been achieved. (B) Suppression of subcritical crime hotspots. Shown is a central subcritical hotspot at t ¼ 100, just prior to the introduction of crime
suppression. Crime suppression is then introduced over the area of the hotspot, leading to the eradication of the hotspot by t ¼ 120. No transient structures
appear in this case. Eventually suppression is lifted at t ¼ 200 and the system quickly adopts the homogenous steady state. Colors scale as explained in Fig. 2.
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One possible explanation for the infrequent observation of
displacement in empirical settings is that environments are suffi-
ciently heterogeneous to limit the feasibility of offenders moving
from favored habitats to adjacent areas that may be bereft of tar-
gets or victims, or may experience much higher levels of surveil-
lance (36). Our analysis is based on a very regular, homogeneous
environment where the baseline crime risk is uniformly distribu-
ted and thus displacement is not constrained by environmental
structure. The assumption of environmental homogeneity could
be perceived as a weakness of the modeling approach since most,
if not all, real-world environments will be heterogeneous in the
distribution of background crime risk (18, 37). We suggest, how-
ever, that a homogeneity assumption is useful as a theoretical
baseline precisely because it is difficult to find in real-world
settings. Were real-world environments as homogeneous as ren-
dered in the current model, displacement would perhaps be much
more common.

It is also possible that crime displacement has not been
observed in empirical settings because controlled experiments
have looked for only immediate spatial displacement in one to
two block catchment areas surrounding crime suppression sites
(8, 32). Displacement of supercritical hotspots in our continuum
models is generally to a location midway between the hotspots
being suppressed, effectively λ�∕2, suggesting that the concern
in empirical studies should be with crime displacement over in-
termediate distances (38).

Finally, the rarity of displacement in empirical tests of hotspot
policing may mean that most real-world hotspots are subcritical
rather than supercritical. However, we might also expect different
crime types to generate different types of hotspots and therefore
respond differently to hotspot policing actions. For example,

open-air drug markets (7, 39) may require a large, initial spike
in drug transactions involving multiple sellers to become estab-
lished in a fixed spatial location. The failure of drug markets
to reemerge following suppression, despite continued small-scale
transactions on the street (40), is behavior consistent with classi-
fication of these markets as subcritical hotspots. By contrast, re-
sidential burglary or auto theft may be more likely to nucleate
into supercritical hotspots, since these crimes are most often com-
mitted by either individuals acting alone or small co-offending
groups (41). Displacement may be expected for these crime
types since the offenders involved may be better able to respond
to suppression by searching for targets in adjacent areas. How-
ever, support for such distinctions will require additional
field experimentation.

We have shown that PDE reaction-diffusion models provide a
mechanistic explanation for crime pattern formation given simple
assumptions about the diffusion of crime risk and localized search
by offenders. These models result in subtle observations about
the fundamental dynamics of crime hotspots that may not be ob-
tained through direct empirical study of crime data. The differ-
ences between supercritical and subcritical crime hotspots, for
example, explain different outcomes of hotspot policing, includ-
ing both hotspot suppression and displacement, and suggest that
policing strategies need to be tailored to hotspot type.
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