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SI Text
Empirical Crime Data. The reaction-diffusion model described by
Eqs. 1 and 2 is based on empirical evidence for how offenders
move and mix with potential targets and how targets/victims of
crime appear to respond to offender attacks under a wide range
of crime types. Data on single-family residential burglary, pro-
vided to us by the Long Beach Police Department, Long Beach,
California, illustrate the phenomena of repeat victimization,
near-repeat victimization, and journey-to-crime distances.

Raw burglary data were scrubbed for duplicates and the re-
maining events were geocoded using ESRI’s ArcGIS platform.
Nearly 98% of events were successfully address-matched yielding
a total sample of 9,042 geocoded single-family residential burgla-
ries reported within the city of Long Beach in 2000–2005. For
each of these crimes we possess information on the geographic
location of the event and day that the crime was reported.

Of the 9,042 events, 7,002 are houses that were victimized ex-
actly once, 819 are houses victimized exactly twice, 98 victimized
exactly three times, and 25 are houses that were victimized four or
more times. For analysis, we divided the dataset into six nonover-
lapping 364 days sets and isolated all those houses that were
victimized exactly two times within a given set. We then calculated
the time interval τ in days between the first and second burglaries
for each of these residences (1). The frequencies of observed time
intervals were normalized to give an empirical probability distri-
bution p2ðτÞ. This empirical distribution is compared to the the-
oretical expectation for repeat burglaries occurring as the result
of a time-invariant Poisson process (Fig. 1A). Deviations from the
Poisson expectation indicate that short repeat time intervals are
more common than expected from independent burglary events,
while long repeat intervals are therefor less common. We inter-
pret this as evidence that initial burglaries generate an enhanced
risk that pulls offenders back to that location to commit a repeat
crime. The elevated risk lasts for approximately six weeks in the
Long Beach data, from which we infer that risk eventually decays
back to a baseline environmental level.

To examine whether the enhanced risk following an initial
burglary also diffuses to neighbors, we isolated those houses in
the Long Beach dataset that were victimized exactly once within
any of the six time windows mentioned above. For each of these
houses, we measured the distance in meters to all other such
houses in the same time window, along with the time separation
τ between the two events. For varying distance bands, we then
determined the fraction of time intervals that were less than
or equal to 14 days. This observed fraction is plotted as a function
of distance between the two homes and compared to an expected
fraction of near-repeat burglaries assuming a Poisson process,
which is independent of physical separation (Fig. 1B). Deviations
above the Poisson expectation for nearby homes indicate that
burglaries are temporally and spatially correlated with one an-
other. We explain this correlation as the diffusion of risk from
a focal burglary to nearby houses. Enhanced risk diffuses as far
as ∼2000 m, at which point the frequency of burglary near-re-
peats follows a Poisson expectation for independent events.

We suppose that offenders are primarily responsible for
spreading enhanced crime risk. A spatial limit of ∼2000 m for
the diffusion of crime risk suggests that offenders primarily search
locally for targets. We corroborate this observation with journey-
to-crime distances for residential burglars committing crimes in
Long Beach, California. Between 2000–2005, the Long Beach Po-
lice Department linked 857 residential burglaries to criminal
suspects or arrestees for which a home location is known. The

number of suspects and arrestees represents ∼9.5% of all residen-
tial burglaries, which is consistent with burglary clearance rates of
∼12% for the United States (2), given that our count includes only
those offenders with known residential addresses. For each of the
857 burglaries, we calculated the linear distance in km between
the known home location for the offender and the crime location.
We excluded eight burglaries that showed a distance of zero km
between offender residence and crime location. There is at least
one instance in the dataset for all distances between 1 and 32 km,
representing 97.3% of all observed search distances > 0 km. Be-
yond 32 km the data are clearly sparse and the maximum ob-
served journey-to-crime distance is 163 km. The mean and
standard deviation in journey-to-crime distances for the contin-
uous portion of the curve between 1 and 32 km are 4.95 km and
6.16 km, respectively. Fig. 1C gives the raw frequency histogram
for journey-to-crime distances < 15 km. Observed journey-
to-crime distances are typically short, suggesting that local
search predominates in offender behavioral routines [(3), but
see Ref. 4].

Methods. The PDE model is integrated using a semiimplicit spec-
tral method (5), typically on a square lattice containing 128 × 128
nodes and using periodic boundary conditions.

The linear stability analysis of Eqs. 1 and 2 is accomplished by
assuming a solution for each that is the homogeneous steady va-
lue plus a perturbation of the system taking the form of a small
amplitude sine wave with wavelength λ ¼ 2π∕k and exponential
growth (or decay) rate σ:

Aðx; tÞ ¼ Āþ δAeσteikx; ρðx; tÞ ¼ ρ̄þ δρeσteikx:

These solutions are substituted into the equations, any terms that
are nonlinear in the small amplitudes are ignored, and the growth
rate σ is then determined as a function of λ. Those wavelengths
with positive growth rates are unstable, and those with negative
growth rates are stable; the parameters of the system determine
which, if any, of the wavelengths fall into each category.

Linear stability analysis provides only an indication of when
linear instabilities may nucleate into hotspots, since all nonlinear
terms are discarded. Our weakly nonlinear analysis explicitly ex-
amines the behavior of the nonlinear terms resulting from system
perturbation, allowing us to discover the existence of large inten-
sity, stable hotspots in the linearly stable regime (the so-called
subcritical hotspots), and establishes an approximate solution
for the amplitude Að∞Þ describing steady-state hotspot intensity
and geometry. We then confirm these findings by numerically
solving the steady-state versions of Eqs. 1 and 2 in a radially
symmetric geometry using a Newton-Raphson-based relaxation
method and Neumann boundary conditions (Fig. 3A). The
boundary between parameter regimes supporting supercritical
and subcritical hotspot formation (Fig. 3B) is also determined nu-
merically using bifurcation diagrams found for systems with vary-
ing values of ηA0.

Hotspot suppression is modeled by instantaneously defining a
“dampening field” dðxÞ such that dðxÞ is effectively equal to one in
regions not currently within a hotspot and zero in regions that are
within a hotspot; the value of dðxÞ varies smoothly but rapidly
between the two extremes on the hotspot edges. In both Eqs.
1 and 2, the term ρA is replaced by dρA, so that no crime may
occur in the dampened areas. After a set amount of time has
passed, a new dðxÞ field is determined using the current location
of hotspots, if any.
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Movie S1. Hotspot displacement animation. Supercritical hotspots form under linearly unstable regimes. Nonlinear analysis suggests that suppression of
supercritical hotspots will lead to displacement of the hottest areas of crime into a ring. Numerical integration supports this finding and shows further that
crime hotspots displaced into a ring quickly break up to form new hotspots located midway between hotspots being suppressed. Video animations illustrate
the 2D effect of displacement of suppressed supercritical hotspots. A 1D cross-section shows how the central hotspot is displaced into adjacent locations.

Movie S1 (GIF)

Movie S2. Hotspot dissipation animation. Subcritical hotspots form under linearly stable regimes with parameterizations close to unstable regimes. Nonlinear
analysis suggests that suppression of subcritical hotspots will lead to dissipation of the hotspot, a phenomenon we describe as a hysteresis effect. Numerical
integration supports this finding, showing that the locations of former hotspots during suppression actually have lower crime than surrounding regions.
However, when suppression is removed crime within the former hotspot rebounds only to the environmental average. Hotspots will not reemerge unless
a large enough spike in crime overrides the linear stability of the system.

Movie S2 (GIF)
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