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ABSTRACT 

This dissertation is devoted to better understanding the role that fluids play in the selec-

tion of the shapes and functions of objects and creatures in nature.  Toward that end, three 

specific examples are considered:  stalactites, icicles, and species of colonial green algae 

known as Volvox.  In the cases of stalactites and icicles, the object's growth is considered 

as a free-boundary problem.  For stalactites, the coupling of thin-film fluid dynamics with 

calcium carbonate chemistry leads to a local, geometric growth law that is proportional to 

the thickness of the water layer covering the surface at any point.  Application of this law 

to a uniformly translating shape allows a universal stalactite form to be derived; the com-

parison of this shape to images of actual stalactites supports the theory.  In the case of ici-

cles, the transport of the latent heat of fusion is coupled with the dynamics of both the 

thin-film of water encompassing the icicle and a thermally buoyant boundary layer in the 

immediately surrounding air.  The uniformly translating shape solution is found to be pa-

rameter-free, and is, in fact, the same shape exhibited by stalactites.  A comparison be-

tween this shape and icicle images validates the theory.  The final example considers how 

advection of nutrients due to the stirring of water by the flagella of a Volvox colony leads 

to a metabolite uptake rate that is much greater than would occur by diffusion alone.  

Moreover, nutrient acquisition by pure diffusion would limit the size of Volvox species to 

a certain bottleneck radius at the point where diffusional uptake just meets metabolic de-

mands, whereas advection increases the uptake in such a way as to avoid this problem en-

tirely, thus enabling the evolution of the larger Volvox species. 



 9

1. PROLOGUE 

Nothing is as ubiquitous on Earth as the fluids that surround us in our everyday lives.  

From the water that we drink, which covers nearly three quarters of the Earth's surface 

and makes up roughly sixty-five percent of our own bodies, to the thousand kilometer 

thick atmosphere that we breathe, there is no escaping the constant presence, and accom-

panying influence, of fluids on our planet.  The incredible power of this influence over 

the natural world is evident whether gazing through binoculars at the majestic Grand 

Canyon, forged by millennia of erosion from the Colorado River, or peering through a 

microscope as a lowly E. coli bacterium swims via its flagella, shaped over eons by a 

marriage of fluid dynamics and natural selection.  Indeed, the physical forms and physio-

logical functions of myriad other terrestrial objects and organisms like these are depend-

ant upon, if not dictated by, the fluids that surround them. 

In the following three chapters, we examine some specific instances of this sort of 

dependency in detail.  Each chapter provides a summary of one or more of the papers 

presented in the appendices at the end of this dissertation and is divided into two seg-

ments:  introduction and present study.  In each introduction, a general overview of the 

topic will be given, in which we explain the issue at hand and present a brief review of 

previous research done in the area.  Then, in each present study section, we summarize 

the methods, results, and conclusions of the relevant paper(s) within the appendices.  

These present study subsections are not intended to be rigorous presentations of the re-

search they summarize; rather, they present only the major points and conclusions of the 

research.  To accomplish this, many details have been omitted, especially within the vari-
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ous calculations employed.  Furthermore, all citations of previous works are found in the 

appropriate appendix, so they will not be provided in these sections.  Therefore, the ap-

pendices are a crucial part of this dissertation and, for a complete understanding, they 

should be read along with the main body of the work.  By so doing, we expect the reader 

will be provided with a convincing case for the power and importance of fluids in the 

natural world. 
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2. CAST IN STONE 

That drop was falling when the Pyramids were new; when Troy fell; when the founda-
tions of Rome were laid; when Christ was crucified; when the Conqueror created the 
British empire; when Columbus sailed; when the massacre at Lexington was “news.” It is 
falling now; it will still be falling when all these things shall have sunk down the after-
noon of history, and the twilight of tradition, and been swallowed up in the thick night of 
oblivion. 

-Mark Twain, The Adventures of Tom Sawyer 
 

2.1. INTRODUCTION 

The first stop on our intellectual journey is the stalactite, that iconic cave formation 

which dangles from the stony ceiling like the Sword of Damocles above the heads of in-

trepid spelunkers below.  From as early as the first century A.D., the origin and nature of 

these speleothems have been the subjects of speculation and wonder around the globe, the 

number of explanations for which being nearly as plentiful as the formations themselves 

[1]. 

It was not, however, until the 19th century that the chemical and physical mecha-

nisms underlying the growth of the stalactite were properly understood.  Basically, these 

include the chemical reactions of calcium carbonate within an extremely thin water layer 

that covers the stalactite's surface, and they have been well described and characterized 

by works such as those of Dreybodt and Buhmann [2,3].  These investigations are suc-

cessful insofar as they correctly explain the glacially slow growth of cave formations in 

general and offer a glimpse of the underlying connection between these growth rates and 

the details of the coating water layer.  In fact, attempts have been made [4,5] to use such a 

connection to explain the shapes of the stalactite's alter ego, the floor-bound stalagmite; 

unfortunately, these explanations have not been rigorous in their descriptions of the fluid 

dynamics governing the layer and its relationship with the underlying geometry of the 
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speleothem. 

In order to account for this connec-

tion, we have approached the problem of 

stalactite growth from a free-boundary per-

spective [6,7].  In this way, the overall sta-

lactite shape influences the details of the 

fluid flow over the surface, which in turn 

dictates the way in which the substrate 

grows.  As we shall see, this coupling of the 

geometry, chemistry, and fluid flow charac-

teristics predicts a universal mathematical 

form for stalactites which compares quite 

well with the real thing.  Thusly, fluids make their mark upon the subterranean world. 

2.2. PRESENT STUDY 

The long, slow process of speleothem generation begins with water percolating down 

through the soil above a cave.  As the water travels downward, it eats away at calcium 

carbonate minerals (among others) that are present in the overlying soil.  Since this soil 

has a far greater effective partial pressure of CO2 than the atmosphere, significant quanti-

ties of this gas may accumulate during the water’s journey.  This lowers the pH of the wa-

ter, allowing more calcium carbonate to dissolve, and the cycle continues. 

Eventually the water, now laden with calcium ions and various aqueous carbonate 

species, enters the cave through openings in the ceiling.  Upon exposure to the cave’s at-

 
Figure 2.1: Stalactites in Kartchner Caverns 
State Park, Benson, AZ. 
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mosphere and its lower CO2 partial pressure, carbon dioxide begins to outgas from the 

solution.  Simultaneously, this causes the dissolved calcium to become supersaturated, 

forcing it out of solution via growth on the underlying rock.  Thus, a speleothem is born. 

In order for this formation to become a stalactite, though, it is typically required 

for a “soda straw” to be generated first.  This is essentially an elongated limestone tube 

through which water flows until it drips off the end.  Each drip leaves behind a small rim 

of growth, elongating the tube over time.  At some point, however, water may begin to 

flow on the outside of the soda straw, leading eventually to a stalactite, which may or 

may not have a still-dripping soda straw at its core. 

A typical stalactite may have a length of 50 cm and a radius of 5 cm.  Of course, 

stalactite measurements vary widely, but these figures are representative.  Over this for-

mation flows an average of about 10 to 100 ml of water per hour, corresponding to ap-

proximately one drip every few minutes.  As we shall soon show, this relatively low flow 

rate over a structure of this size results in a water film thickness h of only tens of mi-

crons, with a peak fluid velocity of only a few millimeters per second.  Hence, the fluid 

flow in question may be considered laminar and non-inertial. 

Due to the low Reynolds number involved in the flow over a typical stalactite, 

Stokes flow may be assumed.  Furthermore, because the water layer thickness is so small 

compared to the stalactite’s radius, we can approximate the flow as that underneath an in-

clined plane with a width equal to the circumference of the stalactite at that point and an 

inclination angle equal to the local tangent angle of the stalactite’s profile (see Figure 

2.2).  By solving the gravity-driven Stokes equation subject to the appropriate boundary 
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conditions and enforcing conservation of fluid flow along the length of the stalactite, we 

arrive at an expression for the layer thickness, 
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where Q is the volumetric flow rate, v is the kinematic viscosity of water, g is gravita-

tional acceleration, r is the local radius, and θ  is the local tangent angle.  If we now sub-

stitute known values into this expression, we recover our initial thickness estimate of tens 

of microns.  Of course, (2.1) is not valid very near the tip of the stalactite.  In this region, 

capillary effects become important and cause drops to form and eventually fall.  In fact, 

the tip region will remain off limits for the rest of this analysis, and anything happening 

there will become a parameter within the rest of the theory. 

The second crucial ingredient for stalactite growth lies in the chemistry indicated 

above by which the cave formations grow.  Thankfully, most of the details related to this 
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Figure 2.2: Geometry of a growing stalactite. 
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have been previously worked out, so we only quote the major results here.  It has been 

shown that, for typical chemical species concentrations, the stoichiometry of the reactions 

involved demands that for every molecule of CaCO3 added to the surface of the speleo-

them, one CO2 molecule must be created in the fluid layer via the conversion of bicar-

bonate.  This carbon dioxide generation is described by the rate equation 

 
[ ] [ ] [ ]-

32
2 HCOCO

CO
−+ +−= kk

dt

d
, (2.2) 

in which 

 [ ] [ ] 21
-

21 H,OH −
+

−−+++ +=+= kkkkkk , (2.3) 

and 1±k  and 2±k  are rate constants for the two pathways available for this conversion.  

For typical values of the pH, +k  and −k  evaluate to around 0.1 to 1 sec-1.  It should also 

be noted that these CO2 generating reactions are the slowest of all the reactions occurring, 

and are, therefore, the rate limiting step in the chemical process. 

By taking an inverse of the rate constants above, we arrive at a timescale for the 

chemical reactions of 1 to 10 seconds.  Compare this, then, to the timescale for diffusion 

of a chemical species with diffusion constant 510−=D  cm2/sec across the fluid layer, 

12 10/ −≈Dh  seconds.  Clearly, diffusion is significantly faster than the slowest chemical 

reactions.  This implies that the concentrations of chemical species across the fluid layer 

will be nearly constant, allowing us to use the average values of such species in equations 

such as (2.2).  Along similar lines, we can argue that, because growth is so slow (only 

around one centimeter per century), chemical concentrations will vary little along the 

length of the stalactite.  Hence, advective transport down the stalactite is negligible, per-
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mitting us to focus only on what is happening locally when deriving a growth law.  Fi-

nally, one can show through a detailed analysis that atmospheric diffusion of CO2 is also 

unimportant, leaving the overall rate limiting step of the growth process as the carbon di-

oxide generation described by (2.2). 

Using this information, then, we can make a simple derivation of the growth law 

for stalactites.  The flux of CO2 out of the water at any point is just the local layer thick-

ness multiplied by the time rate of change of the carbon dioxide concentration at that 

point.  In other words, reactions occur at a constant rate volumetrically, so the thicker the 

water is, the more CO2 is being generated there.  Using the one-to-one relationship be-

tween carbon dioxide generation and CaCO3 growth equates stalactite growth to this cal-

culated CO2 flux.  A multiplication of this factor by the molar volume of calcium carbon-

ate translates the flux into a normal growth velocity of the stalactite’s surface that may be 

written as 

 
3/1

sin
vv 







=
θrcg

l
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with vc a characteristic velocity that depends upon the concentrations of aqueous bicar-

bonate and atmospheric carbon dioxide along with the rate constants +k  and −k , and l  a 

length scale dependant upon the flow rate Q.  Typical values place vc at 0.1 to 1 centime-

ter per century, consistent with known tip elongation rates. 

A superficial examination of (2.4) reveals that the growth velocity should be 

much higher near the tip of the stalactite, where r and θ  are small.  This should have the 

general effect of emphasizing long, pointy structures, as stalactites tend to be.  A more de-



 17

tailed analysis in the form of numerical calculations verifies this behavior and can be seen 

in Figure 2.3(a).  Most interestingly, the numerical output seems to indicate that there is 

an attractor of these dynamics in shape space that is a uniformly translating shape; i.e., a 

shape that does not deform as time goes by, but simply reveals more and more of itself. 

Analytically determining the functional form of this shape is not very difficult.  

First, we note that, in general, uniformly translating shapes are described by dynamics in 

which the normal growth velocity at any point is such that θcosvv tg = , where vt is the 

velocity of the tip.  To find our shape, then, we apply this formula to the growth velocity 

as given in (2.4), rewrite trigonometric quantities in terms of the derivative of the stalac-

tite’s profile )(rz′ , and scale z and r by a length scale ( )3v/v tca l=  to give dimen-
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Figure 2.3: (a) Numerical stalactite growth.  The different colored lines represent the 
shape at increasing times, starting from black and moving to green.  When aligned as 
shown at the tip, these profiles collapse onto a uniformly translating shape (dashed 
line).  (b) The numerically integrated ideal stalactite shape. 
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sionless variables ζ  and ρ.  Through this procedure, one finds that the uniformly translat-

ing stalactite shape obeys the differential equation 

 
( )( ) 0

1

1
22

=−
′+

′
ρζ

ζ
. (2.5) 

Unfortunately, an exact integration of (2.5) is not available, though results of a numerical 

integration are shown in Figure 2.3(b).  However, an expansion at large ρ shows that the 

asymptotic shape is a power law in which 

 3/4~ ρζ . (2.6) 

Since a is typically quite small (perhaps 10-5 cm), this asymptotic regime is reached at 

very small radii, making this four-thirds power law a very good approximation for the 

overall shape, barring the tip. 

The shape described by (2.6) is interesting for multiple reasons.  First, it displays 

a slight convexity that is quite distinct from a cone, reminiscent of the carrot-like profile 

often observed in stalactites.  Secondly, this ideal shape is parameter-free; all details of 

the flow rate and chemical species concentrations are lost in the rescaling to dimen-

sionless variables.  This means that, if the theory is indeed correct, all stalactites should 

tend toward the same mathematical form, the only difference between individuals being 

the factor a that dictates how much of the ideal form is displayed.  In a way, the scaling 

parameter a magnifies the ideal shape onto reality, selecting how much or how little of 

this universal form to reveal. 

To test the validity of the theory, we compared the ideal shape as found by nu-

merically integrating (2.5) with the profiles of actual stalactites.  To accomplish this, we 
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first took many high-resolution digital pictures of stalactites in Kartchner Caverns State 

Park, selecting those that were the most axisymmetric and smooth.  Second, we ran edge 

detection algorithms on these pictures to extract the profiles z(r) for each stalactite.  Then, 

using Mathematica, we performed a least-squares comparison between each profile and 

the ideal shape to determine the optimal value of a for that stalactite.  Finally, we scaled 

the profiles by their respective a values and then averaged them all together.  The fruits of 

this analysis can be found in Figure 2.4.  The results are quite striking, in that the theory 

and the actual shapes agree well (within one standard deviation) over many orders of 

magnitude. 

In conclusion, through our research on speleothem growth, we were able to un-

cover a growth law for stalactites that combines the details of the aqueous chemical reac-

tions and the dynamics of the water in which they occur.  Through a free-boundary ap-

proach, we have found that this law leads to a uniformly translating and universal stalac-
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Figure 2.4: Comparison between the ideal stalactite shape (black line) and the aver-
age of 20 properly scaled stalactite images (green dots and red error bars).  The error 
bars increase further up the shape because there are fewer long stalactites. 
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tite shape that compares well with the forms of actual stalactites.  Truly, just as the very 

existence of stalactites depends upon fluid flow, so too do the details of their mathemati-

cal form. 
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3. FROZEN FLUID FORMATIONS 

Some say the world will end in fire; / Some say in ice.  / From what I've tasted of desire / 
I hold with those who favor fire.  / But if it had to perish twice, / I think I know enough of 
hate / To know that for destruction ice / Is also great / And would suffice. 

-Robert Frost, “Fire and Ice” 
 

3.1. INTRODUCTION 

When looking at the stalactites from our first example (Figure 2.1), it is hard not to be re-

minded of their frigid look-alikes, icicles.  Like stalactites, icicles have fascinated man-

kind since antiquity, but the mechanisms underlying icicle growth have been known for 

much longer, and are well described in numerous publications [8-10].  Icicle growth is, of 

course, the result of the transport of latent heat from the freezing water covering the sur-

face of the icicle into the surrounding, colder atmosphere.  Once the heat escapes into the 

atmosphere, it creates a thermally buoyant boundary layer that rises along the icicle’s sur-

face.  Superficially, this process is not completely dissimilar to that of stalactite growth; 

each involves a quantity that is being transported through a thin, flowing fluid layer sur-

rounding the underlying structure.  Could this conceptual similarity explain the uncanny 

physical resemblance of the two objects? 

To be certain, previous works have taken steps to model the growth of icicles 

[8,9], though not through a strict free-boundary approach.  Unfortunately, though the 

overall growth rates and characteristics are well predicted by these theories, little mention 

has been made of the exact shape adopted by the icicles modeled therein.  Interestingly, 

the analysis of Szilder and Lozowski [9] points toward a slightly convex shape like that 

displayed by real icicles; however, they dismiss this, claiming that their shape “does not 

deviate substantially from simple conical geometry.” 
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To address the issue of icicle shape, we have, as with stalactites, taken a free-

boundary approach to the problem [11].  We find that icicles also tend toward one univer-

sal shape, the functional form of which compares very well with actual icicle images.  

These results are uncanny, insofar as the shape calculated thusly is (at least asymptoti-

cally) identical to that found for stalactites; indeed, the resemblance between the two is 

more than skin-deep, and the power of fluid mechanics to dictate shape is once again dis-

played. 

3.2. PRESENT STUDY 

The process involved in the generation of icicles is in many ways quite similar to that in-

volved in stalactites.  In this case, the water involved is typically melted snow present on 

a roof, or possibly on the branches of a tree.  This near freezing water forms a hanging 

 
Figure 3.1: A collection of icicles. 
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droplet on whatever the substructure might be, and if the air temperature is below freez-

ing, some (or all) of the droplet may turn to ice as the latent heat of fusion is transferred 

into the atmosphere.  If we assume slow growth, only the water at the point of contact 

with the substructure will freeze, the rest will drop away, and a new drop will take its 

place.  Eventually, something like a small ice soda straw might form which may then be-

gin to form the icicle proper, similar to stalactites.  Interestingly, many still-growing ici-

cles will continue to have an unfrozen liquid core, as water that reaches the tip after flow-

ing along the outside of the icicle is drawn up through the tube by capillary action (the 

presence of this unfrozen core will be important in our later analysis). 

The water layer covering the icicle’s surface is very similar to that on a stalactite 

as well.  Of course, icicles are typically smaller than the average stalactite, being only 

around 10 cm in length and a couple of centimeters in radius, and the volumetric flow 

rates on icicles are typically a little higher than on stalactites.  But despite this, the thick-

ness h of the layer is still quite small (maybe 100 microns) and can be described by the 

same equation, (2.1).  The major difference between the two cases, though, is that the 

volumetric flux Q on an icicle is not constant, as it is on a stalactite.  This is, of course, 

because water is being converted to ice as it travels down the icicle. 

To describe the variance of Q on an icicle, we simply write a mass balance equa-

tion that relates the rate at which Q changes with the arclength s as measured from the 

icicle’s tip.  The resulting equation is 

 gr
ds

dQ
v2π= . (3.1) 

If we now enforce the condition on vg for uniformly translating shapes described in Sec-



 24

tion 2.2 ( θcosvv tg = ), and note that drds =θcos , we can exactly integrate (3.1) to 

yield 

 tt rQQ v2π+= , (3.2) 

where Qt is the volumetric flow rate at the tip.  So, as long as the icicle does not become 

too large, and the tip velocity is not too great, the icicle will remain coated with water and 

growth can occur along the entire length.  For the remaining analysis, we will assume this 

to be the case. 

At this point though, the similarities between icicle and stalactite growth end.  

With stalactites, the water layer thickness controls the growth via chemical reactions, but 

for icicles, the controlling step does not occur within the water layer (as long as it exists).  

Rather, another flowing fluid controls the icicle’s fate:  the rising thermal boundary layer 

in the air near the icicle’s surface (Figure 3.2).  But to understand the existence and de-

tails of this layer, we must first analyze how heat is transported within this system. 
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Figure 3.2: Geometry of a growing icicle. 
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As previously stated, for the water on the icicle to freeze, it must give up its latent 

heat of fusion L (measured per unit volume in this case) to the atmosphere.  The first step 

in doing this is the rapid conduction of the heat across the thin water layer.  Due to the 

isothermality of the ice-water interface at the melting temperature Tm and the low Péclet 

number involved, the transport of this heat down the icicle is negligible, and the heat is 

assumed to travel perpendicular to the surface only.  In addition, because of the liquid 

water core within a standard icicle, there is an internal ice-water interface that is also at 

Tm.  This means that no heat is transferred from the icicle’s core to the outer surface, 

hence any heat flux we calculate there is composed solely of the latent heat being re-

leased. 

Once this heat has come to the water-air interface, it enters the atmosphere, rais-

ing the local air temperature slightly as it does so.  This air is now warmer than the sur-

rounding atmosphere, and so it becomes buoyant and begins to rise.  The heat flux across 

this layer can be well approximated by a simple conduction equation, even though advec-

tion plays an important role; the actual flux is found by simply multiplying this approxi-

mated conduction-only flux by an order one constant that is essentially unimportant, as 

we shall see.  So, the heat flux from a point along the icicle where the thickness of the 

natural convection layer is δ  is given by 

 
δ

κ T
F a∆

= , (3.3) 

where κa is the thermal conductivity of air and T∆  is the difference between the ambient 

temperature Ta and the water-air interface temperature Ti at the point in question. 
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To find a formula for this thickness δ, we use as an example the natural convec-

tion boundary layer for a flat, vertical, isothermal plate.  It turns out that there is a 

similarity solution for this system, and the thickness of the boundary layer is found 

through the equation 
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where C is an order one constant that depends on the Prandtl number of air, and νa and β 

are the kinematic viscosity and volumetric expansion coefficient of air, respectively. 

Though (3.4) was not derived with icicles in mind, it can be used to describe the 

thickness of an icicle’s buoyant air layer for the following reasons.  First, using a tem-

perature difference of 10º K, δ is around a few millimeters to a centimeter at most.  This 

is significantly less than the typical icicle radius, so flatness is approximated.  Second, 

though the icicle’s surface is not vertical, the slope changes very slowly at areas not near 

the tip, so that g and z could be modified by approximately constant factors related to the 

average slope.  These constants can be subsumed into the factor C of (3.4), thus leaving it 

essentially unaltered.  Third, the interface temperature Ti can be shown (by equating wa-

ter and air heat fluxes) to be 

 ( )
wa

wa

h

h
TTTT

δκκ
δκκ
/1

/
ammi +

−−= , (3.5) 

where κw is the thermal conductivity of water.  Because of the great disparity between h 

and δ, the ratio of the two is quite small, meaning that the water-air interface temperature 

is only different from the melting temperature by maybe 10-2 to 10-3 º K.  In this way, the 
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icicle is practically isothermal.  Finally, because the velocity of the air layer (cm/sec) is 

much greater than the velocity of the water layer (mm/sec), the no-slip condition used to 

derive (3.4) is essentially attained. 

Having justified our use of (3.4), we can at this point combine it with (3.3) and 

divide by the latent heat per volume of water to derive the normal growth velocity of the 

icicle’s surface.  This gives us the equation 

 
4/1
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

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zcg

l
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where vc is a characteristic velocity and l  is a length scale, both depending upon the 

temperature difference T∆ .  Estimates for vc, again at a T∆  of 10º K, place it at around 

10-4 cm/s, in good agreement with known elongation rates. 

To find the ideal icicle profile, we do as we did with the stalactites and apply our 

growth velocity to a uniformly translating shape.  After rewriting the trigonometric quan-

tities in terms of the slope )(zr ′  and scaling r and z by the lengthscale ( )4v/v tca l=  to 

define the dimensionless variables ρ and ζ, we find that the icicle shape is governed by 

the differential equation 

 
1

1
2/1 −

=′
ζ

ρ . (3.7) 

Unlike the differential equation for the stalactite shape (2.5), we can readily integrate 

(3.7) to find that the shape of an ideal icicle (Figure 3.3) is 

 ( ) 12
3

4 2/12/1 −+= ζζρ . (3.8) 

Note that the shape described here is, like the stalactite shape, parameter-free, implying a 
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universality of form between icicles.  Furthermore, 

at large values of ζ, this shape exhibits the same 

power law as the stalactite shape (2.6); i.e., the ideal 

icicle form is the slightly convex four-thirds power 

law seen before.  Finally, then, we can understand 

why there is such a pronounced visual similarity be-

tween icicles and stalactites. 

Before moving on, we note a curious fact 

about the calculations presented thus far.  If one cal-

culates the shape of an icicle using the heat flux as 

calculated through the water layer thickness, rather 

than through the air layer thickness, the same 

asymptotic shape is found.  The underlying cause of 

this is not understood.  Note that the calculation outlined above does not require any ex-

act details of the water layer’s flow; it is sufficient to simply acknowledge that the water 

thickness is small compared to the buoyant layer and to demand that the icicle be covered 

with water from top to tip.  Hence, the shape (3.8) is not in any way due to the scaling of 

the water layer thickness.  But, when calculating the shape via the water layer, such de-

tails are of pivotal importance.  The fact that the two routes lead to the same answer, then, 

is somewhat mysterious and is, at the very least, an odd coincidence. 

With that noted, we now move to the testing of our theory.  The process behind 

this is practically identical to that for testing the stalactite theory, except for the fact that 
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Figure 3.3: The ideal icicle shape. 
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the icicle images were taken from the Internet, rather than being taken by us (icicles are 

quite rare in Tucson, Arizona, after all).  The results of such a comparison are shown in 

Figure 3.4, and the agreement is clearly quite good.  It should furthermore be noted that 

an attempt to fit the data to a cone, rather than our four-thirds power law, fails miserably, 

as systematic deviations are quite clearly present. 

To conclude, our icicle research has verified that the rate-limiting step in icicle 

formation is the transfer of heat through a thermally buoyant boundary layer of air near 

the icicle’s surface.  This layer can be well approximated as that due to a flat, vertical, 

isothermal plate, and the resulting shape obtained is in very good agreement with images 

of natural icicles.  Finally, the connection between icicles and stalactites is now clear, as 

both have been shown to exhibit the same asymptotic shape, despite the very different 

physical mechanisms underlying their respective growth processes. 
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Figure 3.4: Comparing the ideal icicle (black line) to the average of eight properly 
scaled icicle images (red points and error bars).  Error bars generally increase up the 
shape because there are fewer long icicles.  The small error bars near the end indicate 
that only one icicle is present there. 
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4. LIVING LARGE 

If Creatures of so low an Order in the great Scale of Nature are endued with Faculties to 
enable them to fill up their Sphere of Action with such Proprietry, we likewise, who are 
advanced so many Gradations above them, owe to ourselves, and to Him who made us 
and all things, a constant Application to acquire that degree of Rectitude and Perfection 
to which we also are endued with Faculties of attaining. 

-John Ellis, A Natural History of the Corallines 
 

4.1. INTRODUCTION 

Within the lakes, ponds, rivers, and oceans of the world reside innumerable species and 

families of microorganisms.  Among these are the Volvocales, a family of various species 

of flagellated, colonial green algae ranging in size from the single-cell Chlamydomonas 

reinhardtii to the 100,000 cell behemoth V. gigas (Figure 4.1) [12].  And among these 

various species, generically referred to as Volvox, V. carteri is a giant, coming in at a 

whopping 200 microns in diameter.  Now, this may seem small to us humans, but in the 

microscopic world of phytoplankton, size really does matter, and sometimes in unex-

pected ways. 

For example, the larger an organism is, the more food it generally needs to sur-

vive.  For large land animals like elephants and rhinos, this means spending more time 

eating, and eating more at any given time.  But for very small microorganisms, the rate at 

which one can “eat” is often limited by diffusion.  For larger species of Volvox, this pre-

sents a serious problem, because the rate of diffusive nutrient intake grows only linearly 

with the organism’s radius, while the number of cells grows quadratically (the cells live 

on the surface of the sphere).  What, then, is a large species such as V. carteri to do? 

One answer, provided by Mother Nature herself, is to swim.  Clearly, swimming 

provides a means for an organism to move from a nutrient-poor to a nutrient-rich envi-
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ronment.  However, that is only half the story.  It has long been known, for example, that 

aquatic plants grow larger when living in a rapidly flowing stream than in a still pond 

[13].  This is because the plant living in the flowing stream gains nutrients not only by 

diffusion, as the lake plant does, but also through advection, the transport of a concentra-

tion field by fluid flow.  In a similar way, the swimming of Volvox colonies brings advec-

tion into play, thereby supplementing their diffusional diets. 

But, is advection enough to have allowed the larger Volvox species to evolve?  

The relative importance of advection to diffusion is measured by a dimensionless pa-

rameter known as the Péclet number (Pe), and at large Pe, uptake rates are often ex-

pressed as power laws in this parameter.  For example, the type of fluid flow field generi-

cally exhibited by a Volvox colony leads to an uptake rate that scales as the square root of 

Pe times the organism’s radius [14].  But in order to use this result, we must know how 

the Péclet number is related to the size of the organism in question. 

To address this, we have developed a model for the swimming of these spherical 

 
Figure 4.1: Various species of Volvocine algae and their respective sizes.  The spe-
cies shown here are: A) Chlamydomonas reinhardtii, B) Gonium pectorale, C) Eu-
dorina elegans, D) Pleodorina californica, E) V. carteri, and F) V. aureus.  Note the 
daughter colonies within the last two species, indicating full germ/soma separation. 
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organisms that describes the fluid flow field around the colony and predicts the organ-

ism’s swimming speed, thus enabling a calculation of the Péclet number and the role of 

advection in nutrient uptake [15].  Rather miraculously, our analysis shows that the ad-

vective uptake rate and the number of surface cells scale identically with increasing size, 

illustrating how advection has enabled evolutionary transitions toward these larger spe-

cies.  Moreover, the analysis explains the transition to germ/soma cell differentiation in 

the larger species, and describes an evolutionary advantage to growing larger in size as 

well.  We see, then, how fluids have played a vital role in the evolution of life on Earth. 

4.2. PRESENT STUDY 

As just discussed, it has long been known that aquatic microorganisms use flagella (or 

similar constructs) to move about their environment, presumably to seek out areas of 

greater nutrient concentration, among other things.  However, it has also been postulated 

that flagella may serve an important role in mixing the fluid in which the organism lives, 

thereby increasing the overall uptake rate of nutrients through advection.  Models de-

scribing this mixing behavior quantitatively are not plentiful, though. 

To address this gap in our scientific knowledge, we have created such a model 

based upon Volvox.  The choice of this organism is not at random; the spherical body plan 

they display is very amenable to modeling.  The surface of this spherical creature is home 

to (at least most of) the organism’s cells, each with two flagella oriented outward into the 

surrounding fluid.  This one-cell-thick layer covers the core of the sphere, known as the 

extracellular matrix (ECM), a gelatinous substance secreted by the surface cells.  The 

ECM is thought by some to be a nutrient storehouse, where the surface cells can save 
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away extra metabolites that they have collected for a rainy day (or, possibly, a non-rainy 

day).  The larger Volvox species also contain germ cells within the ECM where reproduc-

tion occurs.  In the smaller species, the surface cells both swim and reproduce, depending 

upon where in the life-cycle the organism resides. 

The major question at hand is how flagellar beating enhances nutrient transport in 

Volvox and similar organisms.  Before answering this, however, we should address the is-

sue of nutrient uptake by pure diffusion to see if, and when, this method of food pro-

curement fails.  If we model the spherical Volvox of radius R as a perfect absorber (i.e., it 

takes up any and all nutrients near it), the metabolite current entering the organism via 

pure diffusion is given by 

 RCDI d ∞= π4 , (4.1) 

where D and ∞C  are the diffusion constant and far-field concentration of the metabolite 

in question, respectively.  Note that this current scales linearly in colony radius. 

Now, let us compare this to the nutritional requirements for this organism.  The 

ECM has no nutritional needs, per se, and the germ cells will take their food from the 

ECM, leaving only the cells on the sphere’s surface to be accounted for.  With the defini-

tion that these cells have nutritional requirements β per unit area, the total metabolic cur-

rent that the organism requires is 

 βπ 24 RI m = . (4.2) 

Since these metabolic demands scale quadratically with the radius while the diffusional 

supply scales only linearly, there will clearly be a point at which Im is equal to Id.  To find 

this point, which we will refer to as the “bottleneck radius”, one must simply equate (4.1) 
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with (4.2) and solve for the radius, yielding 

 
β

∞=
CD

Rb . (4.3) 

At sizes larger than this, then, these organisms should starve as nutrient demand outstrips 

diffusional supply (Figure 4.2(a)).  However, estimates place the bottleneck radius in the 

range of 50-200 microns, smaller than many of the larger Volvox species.  Evidently, dif-

fusion is not the only means of nutrient acquisition for these organisms. 

In fact, diffusion for the larger Volvox species is negligible compared to advection.  

This can be seen by examining the Péclet number involved for these large species; this ra-

tio of advective to diffusive importance is written as 

 
D

RU2
Pe= , (4.4) 

where U is the organism’s free-swimming speed.  Measurements from large colonies 

place Pe in the hundreds, clearly showing that advection dominates diffusion.  In such 

circumstances, the advective current Ia is often expressed as a power law in Pe.  In order 
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Figure 4.2: (a) Illustrating the bottleneck radius.  Once metabolic demands (green) outstrip diffusional 
currents (red), the organism begins to starve.  (b) Advection bypasses the bottleneck.  On this log-log 
plot, advective current (blue) is parallel to metabolic needs at radii greater than the advective radius.  
Since the bottleneck radius (indicated by Λ) is greater than this, the bottleneck is completely circum-
vented. 
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to find the power law in this particular case, though, a fluid flow model must first be de-

veloped. 

The details of our model are nearly identical to the typical calculation of Stokes 

flow past an inert sphere.  We may assume Stokes flow in this case because, though Pe is 

high, the Reynolds number is still quite low.  So, we model the Volvox as a sphere moving 

in the ẑ  direction in the lab frame at speed U, then switch to a co-moving frame so that 

the fluid speed asymptotically approaches zU ˆ− .  There is no fluid flow into or out of the 

organism, so the radial velocity at Rr =  is zero.  To account for the action of the flagella, 

we demand a constant shear stress θ̂f  on the fluid at the Volvox’ surface, where θ̂  is the 

typical polar angle direction for a spherical coordinate system using the ẑ  direction al-

ready defined.  This approach is coarse-grained, ignoring all of the details of the flagellar 

beating, but is a good approximation given the relative smallness of the flagella compared 

to typical colony radii.  Finally, the velocities are scaled by U and the radial coordinate by 

R.  So modeled, the radial and polar components of the fluid velocity are found to be 
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the characteristic speed η4/fRU c =  (with η the dynamic viscosity of water), Pl are Leg-

endre polynomials, and θµ cos= . 
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To test the validity of this model, we first evaluate the tangential flow in (4.6) at 

the surface of the sphere ( 1=r ) for the case in which U is zero.  This is then compared to 

particle imaging velocimetry (PIV) data for the flow speeds along the surfaces of actual 

Volvox colonies held in place with micropipettes.  For each colony’s data, the speeds are 

normalized to best fit the ideal curve through a least squares fit algorithm.  Once the ve-

locities for each colony have been thusly scaled, the data are all combined and averaged 

together.  Figure 4.3(a) shows a comparison between this composite data and the theo-

retical flow rate as a function of polar angle θ ; the agreement between the two is good, 

with the theory lying within one standard error of the measurements. 

Thus satisfied with the validity of our theory, we proceed to use the flow field just 

calculated to model the advection in our system.  First, in order to find the free-

swimming speed of a Volvox colony, we enforce a condition of zero net force on the or-

ganism.  This involves calculating the various stresses and pressure acting on the sphere 

and then integrating them over the surface.  The result of such a calculation is that the 
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Figure 4.3: (a) Verifying the fluid flow model.  The theoretical tangential flow at the colony’s surface 
(blue) is compared to the average of 10 suitably scaled flows measured by PIV around actual Volvox
colonies (black points and error bars).  (b) Concentration field of nutrients near a colony at various val-
ues of Pe, color scale bar at right.  As Pe increases, the boundary layer in front of the colony gets thin-
ner and a depletion plume extends further in the back. 
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swimming speed is given by 
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simply speaking, the larger the colony, the faster it swims.  Using this result, we can re-

write the Péclet number in (4.4) as 
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where Ra is a new length scale we refer to as the advective radius.  Estimates place the 

value of this parameter at around 10 microns, which is around the size of a single surface 

cell and is much less than the bottleneck radius estimated previously. 

The fluid flow field described by (4.5) and (4.6) can now be used to study the ad-

vection of nutrients toward a Volvox colony by looking for solutions of the time-

independent advection-diffusion equation for a passive scalar subject to this flow field 

and the appropriate boundary conditions.  This was accomplished through the use of 

Femlab, a finite-element analysis software package.  Figure 4.3(b) shows the output of 

this program and illustrates the concentration field at various values of Pe.  As Pe in-

creases, the concentration boundary layer in the front of the colony gets smaller and 

smaller, leading to larger and larger uptake rates.  Specifically, for Pe greater than one, 

the advective current follows the law 2/1Pe~ RI a , which, in conjunction with (4.9), 

means that the advective current grows quadratically with colony radius R at radii larger 

than Ra.  Quite amazingly, this scaling is the same seen in (4.2), which describes the 

metabolic needs of a colony.  Hence, advection bypasses the diffusive bottleneck, allow-
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ing evolutionary transitions toward larger colony size; this effect is summarized in Figure 

4.2(b). 

Further indirect evidence of the importance of advection can be deduced from the 

evolution of germ/soma separation in the Volvocales.  On the small end of the species 

spectrum, the colonies are composed of only one type of cell that both swims and repro-

duces when the time is right.  As we move up the spectrum, we eventually come across 

Pleodorina californica, the first species to exhibit soma differentiation, in which only 

some of the surface cells reproduce while the others are purely for swimming.  Moving 

further up, the species eventually exhibit total germ/soma differentiation, in which the re-

productive (germ) cells have moved to the inside of the sphere, leaving swimming-only 

(somatic) cells on the outside.  Now, the undifferentiated cells of the smaller species are 

subject to what is know as the “flagellation constraint”; this means that during the repro-

ductive phase of these cells, all swimming stops.  Therefore, no advection will occur dur-

ing the reproductive phase of these small colonies, just when they need nutrients the 

most, and diffusion alone must provide nutrition.  However, it turns out that the colonies 

without any differentiation are smaller than our low estimate for the bottleneck radius (50 

µm), so advection is not necessary for their survival.  In fact, Pleodorina is of compara-

ble size to this low bottleneck estimate, and the first of the complete germ/soma separated 

species is around the size of the high estimate (200 µm).  We see, then, that the need to 

swim in order to survive has been evolutionarily translated into the separation of cells by 

function, so that the colonies above the bottleneck radius will not have to stop swimming 

to reproduce. 
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We have shown thus far that advection due to flagellar beating facilitates the evo-

lutionary transition to larger colony size in the Volvocales.  However, it seems that this 

advective facilitation may also present an advantage toward growing larger in size.  As 

shown in Figure 4.4, the extra current per unit area (i.e., per cell) that advection offers 

over pure diffusion grows precipitously over the range of radii from 1-10 Ra, after which 

it saturates.  The consequences of this are clear: for very small colonies, it is advanta-

geous to increase in size, as this will lead to a large payoff per cell in terms of enhanced 

nutrient current for the same amount of individual work.  Call it microscopic socialism, if 

you will.  Past a certain size, though, this payoff becomes small, negating the advantage 

enjoyed by the smaller species. 

In conclusion, the work presented here has shown that, at least in Volvocalean 

species, advection due to the beating of flagella is extremely important in facilitating evo-
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Figure 4.4: The advantage of being large.  At small radii, the advantage per cell con-
ferred by advection over pure diffusion increases precipitously with increasing size.  
At larger sizes, though, this advantage saturates. 
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lutionary transitions to larger and more-multicellular organisms.  In addition, germ/soma 

separation seems to be a consequence of the necessity of the larger colonies to continu-

ally swim, and the advantage conferred by advection may even present an incentive for 

smaller colonies to evolve into larger ones.  Clearly, the interaction of these organisms 

with the fluid surrounding them has had enormous influence over their evolutionary his-

tory and is responsible for much of their biological form and function. 
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5. EPILOGUE 

In this section, we will highlight a few of the questions that remain unanswered regarding 

the various research subjects presented in Chapters 2 through 4, beginning with stalac-

tites.  Research into speleothem morphology is relatively sparse, and many questions on 

this subject remain.  For example, could analyses similar to that of Chapter 2 be done for 

other standard speleothem types to explain their basics shapes?  Many explanations for 

the stalagmite shape have been put forth over the years [4,5], though they are not quite 

equivalent to the free-boundary approach we have employed.  However, other formations 

such as draperies, shields, and helictites offer a fertile and relatively untouched ground 

for further investigation. 

Another unsolved problem in this field involves the ripples or “crenulations” seen 

on the surfaces of many speleothems [16].  These ripples do not seem to be simply ran-

dom deformities, as their wavelengths are quite consistently around one centimeter, indi-

cating that there is a common cause behind them all.  The underlying mechanism behind 

their formation is, at present, unknown, but could likely be found through a sufficiently 

detailed and careful linear stability analysis of the combined reaction-diffusion and fluid 

flow systems. 

Interestingly, this issue of surface ripple formation is also one of the outstanding 

problems of icicle research.  Unlike the stalactite’s ripples, though, there have been some 

attempts at explaining the existence of icicle ripples [17-19], and the results of these 

analyses are encouraging.  However, though these papers do predict average ripple wave-

lengths that match with observations, they do not explain the uniformity of wavelengths 
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observed in nature.  Furthermore, none of them take into account the buoyant air layer 

discussed in our analysis, and are therefore somewhat suspect.  It is probable that the true 

explanation for icicle ripples will require an incorporation of the dynamics of the buoyant 

air layer as seen in Chapter 3 of this dissertation. 

Finally, we turn to the subject of Volvox, for which the remaining questions are le-

gion.  Regarding our analysis, one may wonder if the boundary conditions we have em-

ployed (a perfect absorber) are realistic.  For example, it may be the case that uptake rates 

are tied to rates of waste removal, changing the analysis significantly.  Experiments de-

signed to verify or discount this assumption are currently underway. 

Also of interest are time-dependent models of Volvox swimming.  Clearly, the 

shear stress on the colony’s surface is not constant in time, reflecting the flagellar beating 

cycle.  What effect any small-scale time-variation has in general is not well known.  Per-

haps, though, long-scale variations can lead to phenomena such as phototactic steering, in 

which the presence of light decreases flagellar activity, leading to net torques on the Vol-

vox that orient it toward said light [20,21]. 

Obviously, these few questions merely scratch the surface of the large body of 

work remaining to be done on the areas of research presented herein.  Moreover, the top-

ics presented here are but the smallest sampling of those that relate to the larger theme of 

fluids and their influence over our natural world.  In the end, this dissertation is but a 

footnote in that regard, though it is my hope that others will find this footnote both as 

interesting and as enlightening as I have. 
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Stalactite Growth as a Free-Boundary Problem: A Geometric Law and Its Platonic Ideal
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The chemical mechanisms underlying the growth of cave formations such as stalactites are well known,
yet no theory has yet been proposed which successfully accounts for the dynamic evolution of their
shapes. Here we consider the interplay of thin-film fluid dynamics, calcium carbonate chemistry, and CO2

transport in the cave to show that stalactites evolve according to a novel local geometric growth law which
exhibits extreme amplification at the tip as a consequence of the locally-varying fluid layer thickness.
Studies of this model show that a broad class of initial conditions is attracted to an ideal shape which is
strikingly close to a statistical average of natural stalactites.

DOI: 10.1103/PhysRevLett.94.018501 PACS numbers: 91.65.–n, 47.15.Gf, 47.54.+r, 68.70.+w

The astonishing variety and beauty of structures found in
limestone caves, from stalactites and stalagmites to soda
straws, draperies, and helictites, have been the subject of
human wonder for hundreds if not thousands of years [1].
There is little debate about the fundamental chemical pro-
cesses responsible for their development. Water enters the
cave from the overlying environment with significant con-
centrations of dissolved carbon dioxide and calcium. As
the partial pressure of CO2 in the cave is lower than that in
the overlying rock, CO2 outgases from the water. This
raises the pH and leads to supersaturation and then pre-
cipitation of calcium carbonate. Yet, this chemical picture
is only part of the story, for it does not in any direct way an-
swer the most obvious morphological question: why are
stalactites long and slender, often roughly conical? While
some studies address the dynamics of speleothem mor-
phology, [2–4], none quantitatively explains this most
basic fact.

Here, we view the growth of stalactites as a free-
boundary problem akin to those found in the theory of
crystal growth [5], and derive a geometric law of motion in
which the growth rate depends on the local radius and
inclination of the stalactite surface. This approach is used
to explain quantitatively the long, slender forms of stalac-
tites by leading to the discovery of a universal shape toward
which general initial conditions evolve. Found under a set
of limiting assumptions, this may be thought of as the
Platonic ideal of speleothem growth. While real stalactites
have more complex shapes due to instabilities and cave
inhomogeneities, we find that comparison with the average
shapes of natural stalactites shows very good agreement.
This work serves to emphasize a broad class of problems
that demands considerable attention— free-boundary dy-

namics in precipitative pattern formation. Beyond speleo-
thems, these include structures as diverse as hydrothermal

vents [6], chemical gardens [7], mollusc shells [8], and
tubes whose growth is templated by bubbles [9]. Further
development of greatly-accelerated model systems [10] to
allow quantitative tests of such theories is thus an impor-
tant goal.

The fluid layer flowing down the surface of a growing
stalactite controls precipitative growth, so we first establish
its typical thickness and velocity. Consider a cylindrical
stalactite of radius R, length ‘, over the surface of which
flows an aqueous film of thickness h. We show below that
the Reynolds number is low enough that the Stokes ap-
proximation is valid, and that h � R over nearly the entire
stalactite, so the velocity profile in the layer may be de-
duced by assuming a flat surface. Let y be a coordinate
perpendicular to the surface and � the tangent angle with
respect to the horizontal [Fig. 1(a)]. The Stokes equation
for gravity-driven flow is �d2u=dy2 � g sin�, where � �
0:01 cm

2=s is the kinematic viscosity of water. No-slip and
stress-free boundary conditions at the solid-liquid and
liquid-air interfaces yield u�y� � u0�2�y=h� � �y=h�2�,
where u0��gh2=2��sin�. The volumetric flux Q�2�R�R
h
0
dyu�y�� �2�g=3��Rh3 sin�. Measuring Q in cm3=h

R(z)

r

z
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t

(a) (b)
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FIG. 1. Geometry of fluid flow along the surface of a stalactite
(a) and model for determination of growth rate (b).
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and R in cm, we find

h ’ 11 �m

�
Q

R sin�

�
1=3
; (1a)

u0 ’ 0:060 cm=s

�
Q2 sin�

R2

�
1=3
: (1b)

Typically, 1<R< 10 cm and the flow rates are well be-

low 100 cm3=hr [11], so the layer thickness is tens of

microns and the surface velocities below several mm=s.
On the scale of the water layer thickness, the Reynolds

number is Rew � u0h=�
 0:007�Q=R�, well in the lami-

nar regime, as anticipated. Of course, the thickness law

(1a) will cease to hold near the bottom tip of the surface,

where �
 0 and h would appear to diverge. In reality a

pendant drop periodically detaches there, on a scale set by

the competition between surface tension � and gravity—

the capillary length lc � ��=�g�
1=2 
 0:3 cm. We see be-

low that our theory dictates a small-distance cutoff that is

subsumed within the capillary length.

Next we address gross features of the precipitation

process. The accretion rate of calcium carbonate can be

deduced from stalactite elongation rates v, which are


1 cm=century. Since stalactites are so slender, the volu-

metric increase can be estimated by considering the addi-

tion of a disk at the top of the stalactite, where the typical

radius is
5 cm. Hence,
80 cm3 or
200 g of CaCO3 is

added per century. Assuming a volumetric flow rate of


40 cm3=h, toward the lower end of the measured range

[11], the volume of water that flows over the stalactite in a

century is 
36 000 liters. With a typical concentration of

calcium in solution of 150 ppm (mg=l), the total mass of

calcium in that fluid volume is 5.4 kg, yielding a fractional

precipitation of
0:04, sensibly small given the ubiquity of

stalagmites below stalactites [12].

The dependence of the precipitation rate on fluid layer

thickness is crucial; we extend important earlier work [13]

to derive this. Consider a growing spherical body covered

by fluid and surrounded by still atmosphere in which CO2

diffuses [Fig. 1(b)]. The fluid has average calcium ion

concentration �Ca2�� and proton concentration �H��, the

latter assumed constant in the layer, as is valid for thin

films. The ratio � � h=R is an important small parameter.

Of the chemical reactions occurring in the fluid layer, the

most important are [13]:

CO2 � H2O !
k�1

H� � HCO�3 (2a)

CO2 � OH� !
k�2

HCO�3 (2b)

Ca2� � HCO�3 � OH� !CaCO3 � H2O (2c)

H� � CO2�
3  !HCO�3 : (2d)

It is critical to note that for each molecule of CaCO3 that

adds to the surface of the crystal, one molecule of CO2

must be generated in the solution via pathways (2a) and

(2b), whose relative importance depends upon pH. Hence,

for growth (or dissolution) to occur, CO2 and HCO�3 must

not be in chemical equilibrium. Of course, (2c) lies outside

of equilibrium as well, but can be shown to be fast com-

pared to (2a) and (2b) in the case of thin films, so that it is

not rate-limiting. Reaction (2d), on the other hand, will be

considered always equilibrated, leaving �HCO�3 �, �CO
2�
3 �,

and �H�� related by the equilibrium constant K. Therefore,

through the use of an electroneutrality condition, �HCO�3 �
may be expressed solely in terms of �H�� and �Ca2�� as

�HCO�3 � �
2�Ca2�� � �1� ���H��

1� 2�
; (3)

where � � K=�H��, � � KW=�H
��2, and KW is the water

dissociation constant.

To derive a growth law, we find the flux of Ca2� onto the

surface of the sphere from the diffusion equation

@t�Ca
2�� � DCa2�r

2�Ca2��: (4)

We impose upon �Ca2�� zero flux at r � R� h and a flux

�F at r � R for all t, and employ our knowledge of �Ca2��
at t � 0. All diffusive transients are assumed to have

decayed, so @t�Ca
2�� is a constant. The dynamics of

�CO2� are assumed to be in quasi-steady state; therefore,

substituting (3) into the chemical dynamics of the reaction-

diffusion equation for CO2 leaves us with

DCO2
r2�CO2� � k��CO2� � k��Ca

2�� � k0; (5)

where

k0 �
1

2
�1� ��k��H

��; (6a)

k� � k�1 � �k�2�H
��; (6b)

k� �
2�k�1�H

�� � k�2�

1� 2�
: (6c)

We impose zero flux of �CO2� at r�R and flux F=�1� ��2

at r � R� h, recalling that the number of Ca2� molecules

deposited equals the number of CO2 molecules released.

Finally, since diffusion of atmospheric carbon dioxide

�CO2�a is in steady state, we have the Stefan condition

r2�CO2�a � 0; (7)

with boundary conditions of a flux F=�1� ��2 at r� R� h
and an asymptotic value of �CO2�1.

To find the growth rate, we must solve the simultaneous

diffusion equations that hold in each domain, subject to

boundary conditions. The lengthy details of this calcula-

tion will be presented elsewhere. Here, we summarize

them as follows: solve (4) in terms of F and �Ca2��, use

this solution at t � 0 in (5) to find �CO2� in terms of these

same quantities, solve (7) in terms of F and �CO2�1, use

the solutions to (5) and (7) to find �CO2� and �CO2�a at r �
R� h, relate the two through Henry’s constantH, and thus

deduce F. For a sphere, one finds

F ’ h�k��Ca
2�� � k0 � k�H�CO2�1�

�

�
1� �

�
1�

HR2k�
Da

�
�O��2�

�
:

(8)
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Note that F does not depend explicitly upon atmospheric

diffusion until order �. This first correction takes the form

of a ratio of the time scale for diffusion of the newly

created CO2 into the atmosphere to that for conversion of

CO2 back into HCO�
3 . It is also very small, being only


10�3. In contrast with other dendritic growth phenomena

[5], atmospheric diffusion is not rate-limiting, and thus the

dynamics is local.

If the local concentration gradients within the fluid are

dominantly perpendicular to the flow within the layer, then

advective contributions to precipitation can be ignored in

computing the growth rates. In the present calculation,

where we ignore instabilities that can produce ripples,

where the diffusion time tD � h2=D
 0:1 s for equilibra-

tion in the layer is extremely small compared to the contact

time t‘ � ‘=u0 
 103 s for a fluid parcel to traverse the

typical length ‘
 100 cm of the stalactite, and where t‘
itself is extremely small compared to the growth time tv �
h=v
 107 s; this is a valid approximation. Hence, it fol-

lows from (1a) and (8) at leading order that there is a

geometrical law for growth in which the component of

the growth velocity v normal to the surface is given by the

local radius r�z� and tangent angle �,

n̂ � v � vc

�

‘Q
r sin�

�

1=3
; (9)

where vc�vm‘Q�k��Ca2���k0�k�H�CO2�1� is the

characteristic velocity, vm is the molar volume of CaCO3,

and ‘Q��3�Q=2�g�1=4
0:01 cm is a characteristic

length. The velocity vc depends upon the pH through k0
and k�, crossing from positive (growth) to negative (disso-

lution) at a critical pH that depends on �Ca2�� [Fig. 2(a)].

Cave water is close to the typical crossing point, giving

vc 
 0:1 mm=yr, quite consistent with observations.

The growth model (9) generalizes the work of Kaufmann

[4] by explicit inclusion of the dependence of film thick-

ness on stalactite radius and surface inclination—that is, it

recasts the dynamics as a true free-boundary problem. As a

model for axisymmetric surface evolution, Eq. (9) depends

on the absolute orientation of the surface through �, as it

must when gravity breaks the symmetry and drives the

fluid flow. As such, it differs fundamentally from geomet-

rical models of interface evolution [14], which depend only

on invariants such as the curvature ' � @�=@s. Its depen-

dence on angle is reminiscent of the effects of surface

tension anisotropy [5], but with a vastly more singular

form [Fig. 2(b)] producing a high and rapidly-varying

growth rate near the tip, where � is small, and a roughly

constant growth rate for the nearly vertical regions (�

�=2). This extreme amplification near the tip produces the

slender form of stalactites.

Numerical studies of this growth law [Fig. 2(c)] show

that an initially rounded shape develops a conical instabil-

ity at its lowest point; a downward bump, which has a

smaller local radius, also has a locally thicker fluid layer in

order

to conserve mass. This increased thickness produces a

higher precipitation rate and the protuberance grows.

Interestingly, the growing tip approaches a uniformly

translating shape for a wide range of initial conditions

[Fig. 2(d)]. This asymptotic shape z�r� can be found by

noting that the normal velocity (9) at any point on such a

surface must equal vt cos�, where vt is the tip velocity.

Observing that tan� � dz=dr and rescaling symmetrically

r and z as � � �r=‘Q��vt=vc�3 and ) � �z=‘Q��vt=vc�3
yields the differential equation

) 0���
�1� ) 0���2�2 � 1

�
� 0: (10)

Equation (10) has no real solution at � � 0. This is to be

expected as the growth law (9) can not be valid exactly at

the tip, where capillarity must modify the thickness of the

film. The first real solution appears at � � �m � 16=3
���

3
p

,

and for � > �m, there are two distinct real solutions of (10)

for ) 0, the solution of interest having ) 00 � 0. Since ‘Q 

0:01 cm, and assuming that vt � vc, rm will be much less

than the capillary length, so this solution is valid every-

FIG. 2 (color online). Aspects of the growth law. (a) Growth

velocity vc versus pH, using CO2 partial pressure in the cave

atmosphere of 3� 10�4 atm, a temperature of 20 �C, (i) �Ca2��
of 100 ppm and volumetric fluid flow Q � 2 cm3=h, and

(ii) �Ca2�� � 300 ppm and Q � 20 cm3=h. Formulas for con-

stants taken from [13]. (b) The function of tangent angle � in

Eq. (9). (c) A rounded initial condition evolves into a fingered

shape. (d) Aligning the tips of the growing shapes in (c) shows at

early times a rapid collapse to a common form.
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where except the stalactite tip. One easily verifies that at

large � there is a power-law form ) 
 �4=3, which, while

close to the conical form ) 
 �, produces an aspect ratio

, � ‘=w, with ‘ the length and w the width, that increases

with overall length. A systematic expansion yields the

quite accurate approximation

)��� ’
3

4
�4=3 � �2=3 �

1

3
ln�� const: (11)

A direct test of the relevance of the Platonic ideal was

achieved by comparing it to the shapes of natural stalac-

tites. Using a high-resolution digital camera, images of

many stalactites in Kartchner Caverns (Benson, AZ)

were recorded, each with a pair of fiducial marks projected

from two parallel lasers to provide a local scale. It is

important to emphasize that because the rescalings used

to derive Eq. (10) are symmetric in r and z, a direct

comparison between actual stalactites and the ideal re-

quires only a global rescaling of the image. Moreover, as

, for the ideal increases with ‘, this theory predicts that all

stalactites will lie on the ideal curve provided the differ-

ential equation defining that curve is integrated up to a

suitable length. Therefore, we can visually compare sta-

lactite images to the ideal shape rather simply; Fig. 3 shows

three representative examples of such a direct comparison,

and the agreement is very good. Deviations are of course

noted at the tip, where capillarity effects associated with

the pendant drops alter the shape. For a more precise

comparison, we extracted the contours of 20 stalactites

by a standard edge-detection algorithm applied to the

images, yielding r�z� for each. The optimal scaling factors

for each were found by a least squares comparison with the

ideal function. Finally, this set of rescaled data was aver-

aged and compared directly to the theoretical curve

[Fig. 3(d)]. Since each of the stalactites has a different

length, fewer images contribute to the average the further

from the tip one looks, hence the larger error bars further

up the stalactite. The agreement between the data and

theory is excellent; the Platonic form lies uniformly within

1 standard deviation of the mean.

The dynamic and geometric results presented here illus-

trate that the essential physics underlying stalactite shape is

the locally-varying fluid layer thickness controlling the

precipitation rate. Such physics is the basis for a stability

analysis that may explain ripples often found on speleo-

thems, similar to those on icicles [15]. Indeed, since icicle

formation involves both thin-film fluid flow and diffusion

(of latent heat), it is likely that an analysis like that here

may explain the characteristic slender shapes of icicles as

well. More generally, by highlighting the interplay be-

tween surface geometry and growth this work provides a

starting point for a comprehensive explanation of the rich-

ness of speleothem morphology.
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Stalactites, the most familiar structures found hanging from the ceilings of limestone caves, grow by

the precipitation of calcium carbonate from within a thin film of fluid flowing down their surfaces.

We have recently shown �M. B. Short, J. C. Baygents, J. W. Beck, D. A. Stone, R. S. Toomey III,

and R. E. Goldstein, “Stalactite growth as a free-boundary problem: A geometric law and its

Platonic ideal,” Phys. Rev. Lett. 94, 018501 �2005�� that the combination of thin-film fluid

dynamics, calcium carbonate chemistry, and carbon dioxide diffusion and outgassing leads to a local

geometric growth law for the surface evolution which quantitatively explains the shapes of natural

stalactites. Here we provide details of this free-boundary calculation, exploiting a strong separation

of time scales among that for diffusion within the layer, contact of a fluid parcel with the growing

surface, and growth. When the flow rate, the scale of the stalactite, and the chemistry are in the

ranges typically found in nature, the local growth rate is proportional to the local thickness of the

fluid layer, itself determined by Stokes flow over the surface. Numerical studies of this law establish

that a broad class of initial conditions is attracted to an ideal universal shape, whose mathematical

form is found analytically. Statistical analysis of stalactite shapes from Kartchner Caverns �Benson,

AZ� shows excellent agreement between the average shape of natural stalactites and the ideal shape.

Generalizations of these results to nonaxisymmetric speleothems are discussed. © 2005 American

Institute of Physics. �DOI: 10.1063/1.2006027�

I. INTRODUCTION

References to the fascinating structures found in lime-

stone caves, particularly stalactites, are found as far back in

recorded history as the writings of the Elder Pliny in the first

century A.D.
1

Although the subject of continuing inquiry

since that time, the chemical mechanisms responsible for

growth have only been well-established since the 19th cen-

tury. These fundamentally involve reactions within the

thin fluid layer that flows down speleothems, the term which

refers to the whole class of cave formations. As water perco-

lates down through the soil and rock above the cave, it be-

comes enriched in dissolved carbon dioxide and calcium,

such that its emergence into the cave environment, where the

partial pressure of CO2 is lower, is accompanied by outgas-

sing of CO2. This, in turn, raises the pH slightly, rendering

calcium carbonate slightly supersaturated. Precipitation of

CaCO3 adds to the growing speleothem surface. These

chemical processes are now understood very well, particu-

larly so from the important works of Dreybrodt,
2

Kaufmann,
3

and Buhmann and Dreybrodt
4

which have successfully ex-

plained the characteristic growth rates seen in nature, typi-

cally fractions of a millimeter per year.

Surprisingly, a comprehensive translation of these pro-

cesses into mathematical laws for the growth of speleothems

has been lacking. By analogy with the much studied prob-

lems of crystal growth in solidification, interface motion in

viscous fingering, and related phenomena,
5

it would seem

only natural for the dynamics of speleothem growth to have

been considered as a free-boundary problem. Yet, there have

only been a few attempts at this, for the case of

stalagmites,
2–4,6

and they have not been completely faithful

to the interplay between fluid mechanics and geometry

which must govern the growth. This has left unanswered

some of the most basic questions about stalactites �Fig. 1�,

such as why they are so long and slender, like icicles. Also

like icicles,
7–9

speleothem surfaces are often found to have

regular ripples of centimeter-scale wavelengths, known

among speleologists as “crenulations.”
10

No quantitative

theory for their appearance has been proposed.

Recently, we presented the first free-boundary approach

to the axisymmetric growth of stalactites.
11

In this, we de-

rived a law of motion in which the local growth rate depends

on the radius and inclination of the stalactite’s surface. This

law holds under a set of limiting assumptions valid for typi-

cal stalactite growth conditions. Numerical studies of this

surface dynamics showed the existence of an attractor in the

space of shapes, toward which stalactites will be drawn re-

gardless of initial conditions. An analysis of the steadily

a�
Author to whom correspondence should be addressed; electronic mail:

gold@physics.arizona.edu
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growing shape revealed it to be described by a universal,

parameter-free differential equation, the connection to an ac-

tual stalactite being through an arbitrary magnification factor.

As with the Platonic solids of antiquity—the circle, the

square, etc.—which are ideal forms independent of scale,

this too is a Platonic ideal. Of course, the shape of any single

real stalactite will vary from this ideal in a variety of ways

due to instabilities such as those producing crenulations, in-

homogeneous cave conditions, unidirectional airflow, etc.

Mindful of this, we found that an average of natural stalac-

tites appropriately washes out these imperfections, and com-

pares extremely well with the Platonic ideal. Our purpose in

this paper is to expand on that brief description by offering

much greater detail in all aspects of the analysis.

Section II summarizes the prevailing conditions of spe-

leothem growth, including fluid flow rates, concentrations of

carbon dioxide and dissolved calcium which determine the

important time scales, and the relevant Reynolds number. In

Sec. III we exploit the strong separation of three times scales

to derive the asymptotic simplifications important in subse-

quent analysis. A detailed study of the linked chemical and

diffusional dynamics is presented in Sec. IV, culminating in

the local growth law and a measure of the leading correc-

tions. That local law is studied analytically in Sec. V and

numerically in Sec. VI, where we establish the existence and

properties of an attractor whose details are described in Sec.

VII. The procedure by which a detailed comparison was

made with stalactite shapes found in Kartchner Caverns is

presented in Sec. VIII. Finally, Sec. IX surveys important

generalizations which lie in the future, including azimuthally

modulated stalactites and the more exotic speleothems such

as draperies. Connections to other free-boundary problems in

precipitative pattern formation are indicated, such as terraced

growth at hot springs.

II. SPELEOTHEM GROWTH CONDITIONS

Here we address gross features of the precipitation pro-

cess, making use of physical and chemical information

readily obtained from the standard literature, and also, for the

case of Kartchner Caverns in Benson, AZ, the highly detailed

study
12

done prior to the development of the cave for public

access. This case study reveals clearly the range of condi-

tions which may be expected to exist in many limestone

caves �see Table I�. It is a typical rule of thumb that stalactite

elongation rates � are on the order of 1 cm/century, equiva-

lent to the remarkable rate of �2 Å /min. One of the key

issues in developing a quantitative theory is the extent of

depletion of calcium as a parcel of fluid moves down the

surface. An estimate of this is obtained by applying the elon-

gation rate � to a typical stalactite, whose radius at the ceil-

ing might be R�5 cm. We can imagine the elongation in a

time � to correspond to the addition of a disk at the attach-

ment point, so �R2
���80 cm3 or �200 g of CaCO3 �or

�80 g of Ca� is added per century, the density of CaCO3

being 2.7 g/cm3. Now, the volumetric flow rate of water

over stalactites can vary enormously,
12

but in wet caves it is

typically in the range of 10−103 cm3 /h. If we adopt a con-

servative value of �50 cm3 /h, the volume of water that

flows over the stalactite in a century is �44 000 l. A typical

concentration of calcium dissolved in solution is 150 ppm

�mg/l�, so the total mass of calcium in that fluid volume is

6.6 kg, yielding a fractional precipitation of �0.01. Clearly,

depletion of calcium through precipitation does not signifi-

cantly alter the chemistry from the top to the bottom of sta-

lactites. Indeed, since stalagmites so often form below sta-

lactites, there must be plenty of calcium carbonate still

FIG. 1. Stalactites in Kartchner Caverns. Scale is 20 cm.

TABLE I. Stalactite growth conditions and properties.

Parameter Symbol Value

Length � 10–100 cm

Radius R 5–10 cm

Fluid film thickness h 10 �m

Fluid velocity uc 1–10 mm/s

Reynolds number Re 0.01–1.0

Growth rate � 1 cm/century

Diffusion time �d 0.1 s

Traversal time �t 100 s

Growth time �g 106 s

Forward reaction constant k+ 0.1 s−1

Backward reaction constant k�− 10−3 s−1

Henry’s law constant H 0.01
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available in the drip water for precipitation to occur.

Next, we establish the properties of the aqueous fluid

layer on the stalactite surface by considering a cylindrical

stalactite of radius R, length �, and coated by a film of thick-

ness h. Visual inspection of a growing stalactite confirms that

h�R over nearly the entire stalactite, except near the very

tip where a pendant drop periodically detaches. Given the

separation of length scales, we may deduce the velocity pro-

file in the layer by assuming a flat surface. Let y be a coor-

dinate perpendicular to the surface and � the tangent angle

with respect to the horizontal �Fig. 2�. The Stokes equation

for gravity-driven flow, �d2u /dy2=g sin �, with �

=0.01 cm2 / s the kinematic viscosity of water, coupled with

no-slip and stress-free boundary conditions, respectively, at

the solid-liquid and liquid-air interfaces, is solved by the

profile

u�y� = uc�2
y

h
− � y

h
�2	 , �1�

where

uc 

gh2sin �

2�
�2�

is the maximum velocity, occurring at the free surface. It is

important to note that the extremely high humidity typically

in the cave assures that evaporation does not play a signifi-

cant role and so the fluid flux across any cross section is

independent of the position along the stalactite. That volu-

metric fluid flux,

Q = 2�R�
0

h

u�y�dy =
2�gRh3sin �

3�
, �3�

allows us to solve for h and uc in terms of the observables Q

and R. Measuring Q in cm3 /h and R in centimeters, we find

h = � 3Q�

2�gR sin �
�1/3

� 11 �m� Q

R sin �
�1/3

, �4�

uc =
gh2sin �

2�
� 0.060 cm s−1�Q2sin �

R2 �1/3

. �5�

With the typical flow rates mentioned above and R in the

range of 1–10 cm, h is tens of microns and the surface ve-

locities below several mm/s. The Reynolds number on the

scale of the layer thickness h is

Re =
uch

�
� 0.007

Q

R
. �6�

Using again the typical conditions and geometry, this is

much less than unity, and the flow is clearly laminar. Figure

3 is a guide to the layer thickness as a function of Q and R,

and the regime in which the Reynolds number approaches

unity—only for very thin stalactites at the highest flow rates.

The rule for the fluid layer thickness �4� does not hold very

near the stalactite tip, where, as mentioned earlier, pendant

drops form and detach. Their size is set by the capillary

length lc= �� /	g�1/2�0.3 cm, where ��80 ergs/cm2 is the

air-water surface tension.

III. SEPARATION OF TIME SCALES

Based on the speleothem growth conditions, we can now

see that there are three very disparate time scales of interest.

The shortest is the scale for diffusional equilibration across

the fluid layer,

�d =
h2

D
� 0.1 s, �7�

where D�10−5 cm2 / s is a diffusion constant typical of small

aqueous solutes. Next is the traversal time, the time for a

parcel of fluid to move the typical length of a stalactite,

�t =
�

uc

� 102 s. �8�

Third is the time scale for growth of one fluid layer depth,

FIG. 2. Geometry of the surface of a stalactite. The tangent and normal

vectors, along with the tangent angle �, are defined.

FIG. 3. Contour plot of fluid layer thickness h for various stalactite radii and

fluid flow rates evaluated at �=� /2. At a thickness of 60 �m, the Reynolds

number approaches unity, and increases with increasing thickness. The

shaded area beginning at a thickness of 100 �m denotes the region in which

diffusion time across the fluid layer is comparable to the time of the slowest

relevant reaction.
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�g =
h

�
� 106 s. �9�

Inasmuch as the off gassing of CO2 leads to the precipi-

tation of CaCO3, the concentration distributions of these two

chemical species are of interest in the aqueous film. Because

the traversal time scale is much less than that for growth, we

shall see that solute concentration variations tangent to the

growing surface will be negligible and this ultimately per-

mits us to derive a local geometric growth law that governs

the evolution of the speleothem shape. To illustrate our ap-

proximations, we begin by considering the distribution of

Ca2+ in a stagnant fluid layer of thickness h. If C and D,

respectively, denote the concentration and diffusivity of that

species, then

�C

�t
= D

�2C

�y2
. �10�

We require


 �C

�y



h

= 0 and D
 �C

�y



0

= F , �11�

where the deposition rate F at the solid-liquid boundary

�y=0� is presumed to depend on the local supersaturation

C−Csat. For the sake of discussion, we set

F = 
�C − Csat� , �12�

where 
 is a rate constant with units of length/time. Equation

�12� implicitly introduces a deposition time scale

�dep =
h



�13�

that is related to �g. Because the observed growth rate of

stalactites is so low, for the time being we take �dep��t

��d. Toward the end of Sec. IV we obtain an expression for

F that confirms this ordering of time scales and makes it

apparent that 
 depends on the acid-base chemistry of the

liquid film.

If we define a dimensionless concentration

� 

C − Csat

C0 − Csat

, �14�

where C0 is the initial concentration of the solute in the liq-

uid, we can write Eq. �10� as

�2�

�y2
= N

��

�t
, �15�

where time t is now scaled on �dep and the coordinate y is

scaled on h. The parameter

N 


h

D
�16�

is a dimensionless group that weighs the relative rates of

deposition and diffusion. The boundary conditions become


 ��

�y



1

= 0 and
 ��

�y



0

= N� . �17�

Though it is possible to write out an analytical solution

to Eqs. �15�–�17�, we elect to construct an approximate so-

lution by writing

��y,t� = �̄�t� + N���y,t� , �18�

which is useful when N�1, as it is here. �̄�t� represents, to

leading order in N, the mean concentration of solute in the

fluid layer. Upon substituting �18� into �15�–�17�, one obtains

�̄�t� = Ae−t, �19�

where A is an O�1� constant. At short times then, �̄�t�
�A�1− t� and �� /�t�−A. This means the time rate of

change of the solute concentration is constant, and there is

little depletion of the solute, on time scales that are long

compared to �d but short compared to �dep. This latter point

concerning solute depletion and time scales will become

more important as we consider the role of advection in the

film.

Consider again diffusion of the solute across a liquid

film of thickness h, but now suppose that the liquid flows

along the solid surface, which is taken to be locally flat and

characterized by a length scale ��h in the direction of the

flow. If the flow of the liquid is laminar, the �steady� balance

law for the solute �Ca2+� reads as

u�y�
�C

�x
= D

�2C

�y2
. �20�

Here diffusion in the x direction has been neglected. In di-

mensionless form, Eq. �20� is

Nf�y�
��

�x
=

�2�

�y2
, �21�

where x has been scaled on uch /
 and f�y�=2y−y2. Note

that the small parameter N appears on the left-hand side of

�20�, implying that advection plays a lesser role than one

might anticipate from a cursory evaluation of the Peclet

number,

Pe =
uch

D
� 7

Q

R
, �22�

which is �10−100. This is, of course, due to the fact that the

gradient in concentration is nearly perpendicular to the fluid

velocity field, i.e., the extremely low deposition rate does not

lead to a significant reduction in calcium concentration along

the length of the stalactite. Boundary conditions �17� still

apply and the problem statement is made complete by the

requirement that � be unity at x=0.

To construct an approximate solution to Eq. �21�, we

write

� 
 �b�x� + N���x,y� , �23�

where
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�b�x� 


�
0

1

f�y���x,y�dy

�
0

1

f�y�dy

�24�

is the bulk average concentration of the solute at position x.

Substituting �23� into �21� yields

�b�x� = Abe−3/2x, �25�

where Ab is unity if ��0,y�=1.

Recall that the x coordinate is scaled on uch /
. This

means x�1 as long as ��uch /
 or, equivalently, �t��dep.

The bulk concentration �b is thus

�b�x� � Ab�1 −
3

2
x� , �26�

indicating that, to leading order, the concentration of the sol-

ute in the film diminishes linearly with position, i.e., �� /�x

is approximately constant, which is analogous to the behav-

ior obtained for the stagnant film. More importantly, Eq. �26�
reveals the approximate functional form for the calcium

depletion and verifies the existence of a length scale over

which significant depletion occurs that is much greater than

typical stalactite lengths.

IV. CHEMICAL KINETICS AND THE CONCENTRATION

OF CO2

Deposition of CaCO3 is coupled to the liquid-phase con-

centration of CO2 through the acid-base chemistry of the

film. As the pH of the liquid rises, the solubility of CaCO3

decreases. Much work has been done to determine the rate

limiting step in the chemistry of stalactite growth under vari-

ous conditions.
2–4

For typical concentrations of chemical

species, an important conclusion is that the slowest chemical

reactions involved in the growth are those that couple carbon

dioxide to bicarbonate,

CO2 + H2O⇋

k±1

H+ + HCO3
−, �27a�

CO2 + OH−
⇋

k±2

HCO3
−. �27b�

All other chemical reactions are significantly faster than

these and can be considered equilibrated by comparison. It is

also critical to note that these reactions are directly coupled

to the deposition process; for each molecule of CaCO3 that

adds to the surface of the crystal, pathways �27a� and �27b�
must generate one molecule of CO2, which then exits the

liquid and diffuses away in the atmosphere. We express the

local rate of production of CO2 by chemical reaction as

RCO2
= k−�HCO3

−� − k+�CO2� , �28�

where

k− 
 k−1�H+� + k−2, �29a�

k+ 
 k+1 + k+2�OH−� . �29b�

The pH dependence of the rate constant k+ �which is much

greater than k−� is shown in Fig. 4. The inverse of this con-

stant defines an additional time scale. At a pH typical of cave

water ��9�, the value of k+ is �0.1 s−1, giving a chemical

reaction time of about 10 s, much greater than the diffusional

time scale �d. This implies that variations from the average

of �CO2� �or of other chemical species� in the normal direc-

tion within the fluid layer will be quite small. The two time

scales are not of comparable magnitude until the thickness

reaches � 100 �m, significantly thicker than typically seen.

The dependence of the precipitation rate on fluid layer

thickness is crucial; we follow and extend an important ear-

lier work
4

to derive this. As previously noted, the dynamics

of CO2 plays a critical role in stalactite formation, and the

growth of the surface can be found directly from the amount

of carbon dioxide leaving the fluid layer into the atmosphere.

To that end, we begin with the full reaction-diffusion equa-

tion for �CO2� within the fluid layer, taken on a plane with

coordinates x and y tangent and normal to the surface, re-

spectively. That is,

�C

�t
+ u

�C

�x
+ w

�C

�y
= D� �2C

�y2
+

�2C

�x2 � − k+C + k−�HCO3
−� ,

�30�

where C= �CO2�, u and w are the fluid velocity components

in the x and y directions, and D�10−5 cm2 / s is the diffusion

constant associated with CO2 in water. We now stipulate that

only an equilibrium solution is desired, so the partial time

derivative will be ignored. We also note that, insofar as the

plane is considered flat, the velocity w will be zero every-

where, eliminating a second term. Finally, we rescale quan-

tities as

x = �x̃, y = hỹ, u = ucũ, C = C0�1 + 
� . �31�

Then, omitting the tildes, Eq. �30� can be rewritten as

�d

�t

u
�


�x
=

�2


�y2
+ �h

�
�2�2


�x2
+ �2�� − 
� , �32a�

FIG. 4. Values for k+ and k�− �Eq. �51�� as functions of pH are shown as

dashed and solid lines, respectively. Note that k+ is much larger than k�− at

pH values typical of caves ��9�, so �Ca2+� must be significantly larger than

�CO2� for growth to occur.
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� 
�h2k+

D
, �32b�

� 

k−�HCO3

−�

k+�CO2�0

− 1. �32c�

Now, since both h /� and �d /�t are �10−4, we will ignore the

terms corresponding to diffusion and advection in the x di-

rection. This is further justified by the estimation above re-

garding the very low fractional depletion of Ca2+ as the fluid

traverses the stalactite; there is clearly very little change in

the concentrations of species from top to tip. The parameter

��10−1, so we will desire a solution to lowest order in �
only. Furthermore, as � represents the influence of chemical

reactions in comparison to diffusion, it is clear that for very

small �, the concentrations of species will vary only slightly

�order of �2 at most� from their average throughout the layer.

Indeed, the definition of � indicates that there is an important

characteristic distance in this problem, the reaction length

�r =�D

k+

� 100 �m. �33�

When the layer thickness is smaller than �r the concentration

profile is nearly constant; beyond �r it varies significantly.

This criterion is illustrated in Fig. 3. To lowest order in �, we

need not account for the fact that �HCO3
−� and �H+� are func-

tions of y, and instead simply use their average values. The

result of these many approximations is the equation

�2


�y2
= �2�
 − �� . �34�

The first boundary condition imposed on Eq. �34� is that

of zero flux of CO2 at the stalactite surface. Second, we

demand continuity of flux between the fluid and atmosphere

at the surface separating the two. Third, the concentration of

CO2 in the water at the free fluid surface is proportional to

the atmospheric concentration at the same position, the pro-

portionality constant being that of Henry’s law.
16

Finally, the

atmospheric concentration approaches a limiting value

�CO2�� far from the stalactite. Since the solution to Eq. �34�
is dependent upon the atmospheric carbon dioxide field

�CO2�a, we stipulate that this quantity obeys Laplace’s equa-

tion

�2�CO2�a = 0, �35�

as is true for a quiescent atmosphere.

At this point, we alter the geometry of the model to that

of a sphere covered with fluid �Fig. 5�, as Laplace’s equation

is more amenable to an exact solution in these coordinates.

We do not anticipate that this will affect the model in any

significant way, as we have already condensed the problem

to variations of the CO2 concentrations in the direction nor-

mal to the stalactite surface only. This approximation would

be problematic if atmospheric diffusion played a significant

role; this turns out to be not the case, as explained below. In

these new coordinates, the atmospheric carbon dioxide con-

centration is

�CO2�a = �CO2�� +
A

r
, �36�

where r is the radial position relative to the center of the

sphere and A is a constant to be determined. To first order in

�
h /R�10−3 the value of �CO2�a at the water-air interface,

r=R+h, is

�CO2�a�R+h = �CO2�� + �1 − ��
A

R
. �37�

Likewise, the flux of CO2 exiting the fluid at this interface is

found to be

F = �1 − 2��
DaA

R2
, �38�

where Da�10−2 cm2 / s is the atmospheric diffusion coeffi-

cient of carbon dioxide.

Now we turn to the aqueous �CO2�. If we express �34� in

spherical coordinates with the rescaling r=R+hy, and ex-

pand to first order in � we obtain

�2


�y2
+ 2�

�


�y
= �2�
 − �� . �39�

The first boundary condition of zero flux at the stalactite

surface can be expressed as


 �


�y



y=0

= 0. �40�

The Henry law boundary condition is rewritten as


�1� = �1 − ��
A

R�CO2��

, �41�

where we have taken �CO2�0 to be H�CO2��. Finally, using

�38� and our definition of �CO2�0, the condition of flux con-

tinuity between the fluid and atmosphere can be written as


 �


�y



y=1

= − �
DaA

DRH�CO2��

. �42�

Eliminating A between Eqs. �41� and �42� we obtain

FIG. 5. Spherical model for calculating the growth rate. F and F� are the

magnitudes of the fluxes of carbon dioxide and calcium carbonate.
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 �


�y



y=1

= − �
Da

DH

�1� . �43�

After straightforwardly solving Eq. �39� subject to the

boundary conditions �40� and �43�, we expand to lowest or-

der in � and first order in �. From this, we find that the

function 
 is


 = ��2�1 − y2

2
− �

1 − y3

3
+

DH

Da

1 − � − �2

�
� . �44�

We then easily calculate the amount of carbon dioxide leav-

ing the fluid by multiplying the CO2 flux by the surface area

of the outside of the liquid layer. The final step is to equate

the amount of CO2 leaving with the amount of CaCO3 add-

ing to the surface and divide by the surface area of the sphere

to find the CaCO3 flux. The result is

F� = h�k−�HCO3
−� − k+H�CO2����1 + �� . �45�

We see then that atmospheric diffusion is negligible at lowest

order and that the flux is directly proportional to the fluid

layer thickness. Finally, though the spherical approximation

used above is useful, it is not strictly necessary, and the cal-

culations can be repeated using a cylindrical model instead.

The result in this geometry is

F� = h�k−�HCO3
−� − k+H�CO2����1 − �/2� , �46�

differing from the spherical model only at order �. As we

will neglect this term for the remainder of the paper, the

choice of geometry is irrelevant.

As information regarding typical �HCO3
−� is less avail-

able than that regarding �Ca2+�, we wish to reexpress Eq.

�45� in terms of the calcium ion concentration. This is readily

accomplished by first imposing an electroneutrality condition

on the fluid at any point,

2�Ca2+� + �H+� = 2�CO3
2−� + �HCO3

−� + �OH−� . �47�

Next, we note that �OH−� and �H+� are related through

the equilibrium constant of water KW, and that �CO3
2−� , �H+�,

and �HCO3
−� are related through another equilibrium con-

stant, K. Hence, we can express �HCO3
−� solely in terms of

these constants, �Ca2+�, and �H+� as

�HCO3
−� =

2�Ca2+� + �1 − ���H+�

1 + 2�
, �48�

where

� =
KW

�H+�2
, � =

K

�H+�
. �49�

Upon substitution of this formula into Eq. �45�, we obtain

�ignoring the order � correction�

F� = h�k�−�Ca2+� + k0�H+� − k+H�CO2��� , �50�

k�− =
2

1 + 2�
k−, k0 =

1 − �

1 + 2�
k−. �51�

As one can now see a posteriori, the calcium ion flux is

indeed given by a formula of the form supposed in Eq. �12�,
where the values of 
 and Csat are given by


 = hk�−, Csat =
k+

k�−

H�CO2�� −
k0

k�−

�H+� . �52�

With these definitions, �dep=1/k�−�104, and our previous

time-scale orderings are vindicated. In addition, the expres-

sion for Csat is consistent with the underlying chemical ki-

netics.

V. LOCAL GEOMETRIC GROWTH LAW

The two ingredients of the local growth law are now at

hand: the relation �50� for the flux as a function of fluid layer

thickness and internal chemistry, and the result �4� connect-

ing the layer thickness to the geometry and imposed fluid

flux Q. Combining the two, we obtain at leading order a

geometrical law for growth. It is most appropriately written

as a statement of the growth velocity v along the unit normal

to the surface �n̂ in Fig. 2�,

n̂ · v = �c� �Q

r sin �
�1/3

. �53�

Here, r�z� is the local radius and ��z� is the local tangent

angle of the surface, and

�c = vm�Q�k�−�Ca2+� + k0�H+� − k+H�CO2��� �54�

is the characteristic velocity, with vm being the molar volume

of CaCO3, and

�Q = �3�Q

2�g
�1/4

� 0.01 cm �55�

a characteristic length. The velocity �c depends upon the pH

not only through �H+� but also through the definitions of k�−

and k+, crossing from positive �growth� to negative �dissolu-

tion� at a critical pH that depends on the average calcium ion

concentration, the partial pressure of CO2 in the cave atmo-

sphere, and the fluid flux. Figure 6 shows some examples of

this behavior. Cave water is often close to the crossing point,

implying values for �c on the order of 0.1 mm/year.

FIG. 6. Growth velocity �c vs pH, using CO2 partial pressure in the cave of

3�10−4 atm, a temperature of 20 °C, and �i� �Ca2+� of 200 ppm and volu-

metric fluid flow Q=30 cm3 /h and �ii� �Ca2+�=500 ppm and Q=5 cm3 /h.

The formulas for the constants are taken from Ref. 4.

083101-7 Stalactite growth as a free-boundary problem Phys. Fluids 17, 083101 �2005�

 



 58

In comparison to many of the classic laws of motion for

surfaces, the axisymmetric dynamics �53� is rather unusual.

First, unlike examples such as “motion by mean curvature”
13

and the “geometrical” models of interface motion,
14

it de-

pends not on geometric invariants but on the absolute orien-

tation of the surface through the tangent angle, and on the

radius r of the surface. As remarked earlier,
11

the fact that it

depends on the tangent angle � is similar to the effects of

surface tension anisotropy,
15

but without the periodicity in �

one finds in that case. The variation �Fig. 7� is extreme near

the tip, where � and r are both small, and minor in the more

vertical regions, where ��� /2 and r is nearly constant.

Note also that the geometric growth law takes the form

of a product of two terms, one dependent only upon chem-

istry, the other purely geometric. This already implies the

possibility that while individual stalactites may grow at very

different rates as cave conditions change over time �for in-

stance, due to variations in fluid flux, and carbon dioxide and

calcium levels�, the geometric relationship for accretion does

not change. Therein lies the possibility of an underlying

common form, as we shall see in subsequent sections.

VI. NUMERICAL STUDIES

In order to understand the shapes produced by the

growth law �53�, numerical studies were performed to evolve

a generic initial condition. The method of these simulations

is based on well-known principles.
14

Here, because of the

axisymmetric nature of our law, we take the stalactite tangent

angle � to be the evolving variable. The time-stepping algo-

rithm is an adaptive, fourth-order Runge-Kutta method. For

simplicity, all simulations were performed with the boundary

condition that the stalactite be completely vertical at its high-

est point �i.e., the cave ceiling�. The growth law breaks down

very near the tip, where the precipitation dynamics becomes

much more complex. However, it is safe to assume that the

velocity of the stalactite’s tip �t is a monotonically increasing

function of flow rate Q. For the numerics then, velocities at

radii smaller than the capillary length are extrapolated from

those near this region, with the tip velocity scaling at a rate

greater than Q1/3 �this choice will be explained in more detail

in Sec. VII�. The volumetric fluid flux is a user-defined pa-

rameter and sets the value of �Q.

Figure 8 shows how a shape which is initially rounded

develops an instability at its lowest point. The mechanism of

the instability follows from the flux conservation that is an

integral part of the dynamics. The downward protuberance

has a locally smaller radius than the region above and there-

fore a thicker fluid layer. According to �45� this increases the

precipitation rate, enhancing the growing bump. We find nu-

merically that the growing protuberance approaches a uni-

formly translating shape for a wide range of initial conditions

�Fig. 8�. The aspect ratio of this shape, defined here as the

length � divided by maximum width W, is influenced by the

flow rate chosen for the simulation, with a high flow giving a

higher aspect ratio stalactite than a low flow for equal stalac-

tite lengths.

VII. THE TRAVELING SHAPE

The asymptotic traveling shape z�r� can be found by

noting that the normal velocity �53� at any point on such a

surface must equal �t cos �, where, as noted previously, �t is

the tip velocity. Observing that tan �=dz /dr, and rescaling

symmetrically r and z as

	 

r

�Q

� �t

�c

�3

and � 

z

�Q

� �t

�c

�3

, �56�

we find the differential equation

���	�

�1 + ���	�2�2
−

1

	
= 0. �57�

Let us now examine Eq. �57� in detail. A first observa-

tion is that for large �� the balance of terms is ����−3�	−1,

implying a power law,

� � 	�, � =
4

3 . �58�

This particular power can be traced back to the flux relation

Q�h3, and if this were more generally Q�h� then �= ��

FIG. 7. The dimensionless growth velocity, � /�t , vs, �, defined in Eq. �56�,
evaluated for the ideal stalactite shape �Fig. 9�. Note the precipitous drop

away from the stalactite’s tip.

FIG. 8. Numerical results. �a� A rounded initial condition evolves into a

fingered shape. �b� Aligning the tips of the growing shapes shows rapid

collapse to a common form. Here, the profiles have been scaled appropri-

ately �Eq. �60�� and are shown with the ideal curve �dashed line�.
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+1� /� which is always greater than unity for the physically

sensible ��0. As this is steeper than linear the associated

shape is convex outward, and therefore has an aspect ratio

that increases with overall length—just as the classic carrot-

like shape of stalactites.

The differential Eq. �57� has some mathematical subtle-

ties. The term involving �� vanishes at ���	�=0 and also as

���	�→�, is positive at all points in between, and has a

maximum of magnitude 3�3/16 at the point ���	�=1/�3.

The rightmost term will then shift this function downward by

an amount 1 /	. So, at 	=0, there is no real solution to Eq.

�57�. Of course, this is acceptable to us because we do not

expect the velocity law �53� to be valid exactly at the tip of

the stalactite, where capillarity must modify the thickness of

the film. As 	 moves away from zero, we first encounter a

real solution at 	=	m
16/3�3, at which point ���	� is equal

to 1/�3. This minimum radius cutoff, which is intrinsic to

the mathematics and, therefore, inescapable, should not be

confused with the somewhat arbitrary capillary length cutoff

used earlier in the numerical studies. For all 	 greater than

this minimal 	m, there will be two distinct real solutions of

the equation for ���	�. One solution is a decreasing function

of 	, the other an increasing function. Since the physically

relevant shape of a stalactite has a large slope at a large

radius, the second root is of greater interest.

The astute reader will notice that Eq. �57� is essentially a

fourth-order polynomial equation for ���	�, and thus admits

an exact solution. This solution is quite complex, though, and

does not readily allow for an exact analytic formula for ��	�,
though it is useful for numerical integration. Figure 9 shows

the shape so determined. At large values of 	, this formula

can be expanded and integrated to yield the approximation

��	� � 3

4	4/3
− 	2/3

−
1

3 ln 	 + O�	−2/3� . �59�

It is important to note that this ideal shape is completely

parameter-free; all of the details of the flow rate, character-

istic velocity, and tip velocity are lost in the rescaling.

Hence, the stalactites created by our numerical scheme

should all be of the same dimensionless shape, the only dif-

ference between them arising from the different magnifica-

tion factors

a 
 �Q� �c

�t

�3

�60�

that translate that shape into real units. Clearly, when com-

paring stalactites of equal length, the one with the lower

magnification factor will occupy a greater extent of the uni-

versal curve, hence it will also have a higher aspect ratio.

This explains our earlier choice that the tip velocity should

scale at a rate greater than Q1/3; with such a scaling, higher

flow rates lead to lower magnification factors and higher as-

pect ratios, as is the case with real stalactites.

VIII. COMPARISONS WITH STALACTITES

IN KARTCHNER CAVERNS

In this section we describe a direct comparison between

the ideal shape described by the solution to Eq. �57� and real

stalactites found in Kartchner Caverns in Benson, AZ. As is

readily apparent to any cave visitor, natural stalactites may

experience a wide range of morphological distortions; they

may be subject to air currents and grow deformed along the

direction of flow: they may be part of the sheet-like struc-

tures known as “draperies,” ripples may form �see below�,
etc. To make a comparison with theory we chose stalactites

not obviously deformed by these processes. Images of suit-

able stalactites were obtain with a high-resolution digital

camera �Nikon D100, 3008�2000 pixels�, a variety of tele-

photo and macrolenses, and flash illumination where neces-

sary. To provide a local scale on each image, a pair of par-

allel green laser beams 14.5 cm apart was projected on each

stalactite.

Let us emphasize again that because the rescalings used

to derive Eq. �57� are symmetric in r and z, a direct compari-

son between actual stalactites and the ideal requires only a

global rescaling of the image. Moreover, as the aspect ratio

for the ideal increases with the upper limit of integration, our

theory predicts that all stalactites will lie on the ideal curve

provided the differential equation defining that curve is inte-

grated up to a suitable length. Therefore, we can visually

compare stalactite images to the ideal shape rather simply.

Figure 10 shows three representative examples of such a di-

rect comparison, and the agreement is very good. Small de-

viations are noted near the tip, where capillarity effects as-

sociated with the pendant drops alter the shape.

For a more precise comparison, we extracted the con-

tours of 20 stalactites by posterizing each image and utilizing

a standard edge detection algorithm to obtain r�z� for each

�Fig. 11�a��. The optimal scale factor a for each was found

by a least-squares comparison with the ideal function �Fig.

11�b��. This set of rescaled data was averaged and compared

directly to the theoretical curve, yielding the master plot in

Fig. 12. The statistical uncertainties grow with distance from

FIG. 9. Platonic ideal of stalactite shapes. �a� The shape is from the numeri-

cal integration of Eq. �57�. �b� The gray line shows comparison of that

integration with the pure power law given by the first term in �59�, while the

circles represent the complete asymptotic form in �59�.
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the stalactite tip because there are fewer long stalactites con-

tributing to the data there. We see that there is excellent

agreement between the data and the Platonic ideal, the latter

falling uniformly within one standard deviation from the

former. A plot of the residuals to the fit, shown in Fig. 13,

indicates that there is a small systematic positive deviation

near the tip. This is likely traced back to capillary effects

ignored in the present calculation. These results show that

the essential physics underlying stalactite growth is the spa-

tially varying fluid layer thickness along the surface, which

gives rise to extreme enhancement of growth near the tip.

The characteristic, slightly convex form is an explicit conse-

quence of the cubic relationship between flux and film thick-

ness.

IX. CONCLUSIONS

The dynamic and geometric results presented here illus-

trate that the essential physics underlying the familiar shape

of stalactites is the locally varying fluid layer thickness con-

trolling the precipitation rate, under the global constraint on

that thickness provided by fluid flux conservation. Since so

many speleothem morphologies arise from precipitation of

calcium carbonate out of thin films of water, it is natural to

conjecture that these results provide a basis for a quantitative

understanding of a broad range of formations. Generaliza-

tions of this analysis to other speleothem morphologies can

be divided into two classes: axisymmetric and nonaxisym-

metric. Chief among the axisymmetric examples are stalag-

mites, the long slender structures growing up from cave

floors, often directly below stalactites. These present signifi-

cant complexities not found with stalactites. First, the upper

ends of stalagmites are decidedly not pointed like the tips of

stalactites, for the fluid drops that impact it do so from such

a height as to cause a significant splash, although, when a

stalagmite grows close to the stalactite above, it does tend to

adopt a mirror-image form, the more so the closer the two

are to fusing. Like stalactites, stalagmites and indeed most

speleothem surfaces may display centimeter-scale ripples,

further emphasizing the importance of a linear stability

analysis of the coupled fluid flow and reaction-diffusion dy-

namics. A key question is why some stalactites display

FIG. 10. Comparison between observed stalactite shapes and the Platonic

ideal. Three examples ��a�—�c�� are shown, each next to an ideal shape of

the appropriate aspect ratio and size ��a��–�c���. Scale bars in each are 10

cm.

FIG. 11. Analysis of natural stalactites. �a� Posterization of an image to

yield a contour, shown with the optimum scaling to match the ideal form.

�b� Variance of the fit as a function of the scale factor a, showing a clear

minimum.
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ripples while others do not. This will be discussed elsewhere.

Many stalagmites also display a series of wedge-like corru-

gations on a scale much larger than the crenulations. We

conjecture that these may be a signature of a secondary in-

stability, the identification of which would require a fully

nonlinear theory to describe the saturated amplitude of

crenulations.

Two kinds of nonaxisymmetric forms are of immediate

interest, those which arise from instabilities of axisymmetric

shapes, and those which are formed by a mechanism with a

fundamentally different intrinsic symmetry. A likely physical

explanation of these forms is that a small azimuthal pertur-

bation on an inclined surface, effectively a ridge, will accu-

mulate fluid, thereby growing faster. Such deviations from

axisymmetry present an interesting challenge for free-

boundary theories, for the constraint of global flux conserva-

tion translates into a single azimuthal constraint on the vari-

able film thickness at a given height on the speleothem.

Formations of fundamentally different symmetry include

draperies, sheet-like structures roughly 1 cm thick, with un-

dulations on a scale of 20 cm. These grow typically from

slanted ceilings along which flow rivulets of water, and in-

crease in size by precipitation from fluid flowing along the

lower edge. That flow is susceptible to the Rayleigh–Taylor

instability, and not surprisingly there are often periodic un-

dulations with a wavelength on the order of the capillary

length seen on the lower edges of draperies. Since it is

known that jets flowing down an inclined plane can undergo

a meandering instability, it is likely that the same phenom-

enon underlies the gentle sinusoidal forms of draperies.

Other structures in nature formed by precipitation from

solution likely can be described by a similar synthesis of

fluid dynamics and geometric considerations. Examples in-

clude the hollow soda straws in caves, whose growth is tem-

plated by pendant drops �analogous to tubular growth tem-

plated by gas bubbles in an electrochemical setting
16

�.

Likewise, the terraces that form at mineral-rich hot springs

like those at Yellowstone National Park provide a striking

example of precipitative growth from solution. Moreover, the

striking similarity between the geometry of stalactites and

icicles, and especially the ripples on icicles �as discussed in

recent works
7–9

�, suggests a commonality in their geometric

growth laws. In both cases there is a thin film of fluid flow-

ing down the surface, and a diffusing scalar field �carbon

dioxide in the case of stalactites and latent heat for icicles�

controlling the growth of the underlying surface. While the

extreme separation between diffusional, traversal, and

growth time scales found in the stalactite problem likely does

not hold in the growth of icicles, that separation appears

large enough to allow a significant equivalence between the

growth dynamics of icicles and stalactites. Finally we note

that it would be desirable to investigate model experimental

systems whose time scale for precipitation is vastly shorter

than natural stalactites. Many years ago Huff
17

developed

one such system based on gypsum. Further studies along

these lines would provide a route to real-time studies of a

whole range of free-boundary problems in a precipitative

pattern formation.

ACKNOWLEDGMENTS

We are grateful to David A. Stone, J. Warren Beck, and

Rickard S. Toomey for numerous important discussions and

ongoing collaborations, to C. Jarvis for important comments

at an early stage of this work, and to Chris Dombrowski,

Ginger Nolan, and Idan Tuval for assistance in photograph-

ing stalactites. This work was supported by the Dean of Sci-

ence, University of Arizona, the Research Corporation, and

NSF ITR Grant No. PHY0219411.

1
C. Hill and P. Forti, Cave Minerals of the World �National Speleological

Society, Huntsville, AL, 1997�
2
W. Dreybrodt, “Chemical kinetics, speleothem growth and climate,”

Boreas 28, 347 �1999�.
3
G. Kaufmann, “Stalagmite growth and palaeo-climate: the numerical per-

spective,” Earth Planet. Sci. Lett. 214, 251 �2003�.
4
D. Buhmann and W. Dreybrodt, “The kinetics of calcite dissolution and

precipitation in geologically relevant situations of karst areas. 1. Open

system,” Chem. Geol. 48, 189 �1984�.
5
M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilib-

FIG. 12. Master plot of stalactite shapes, rescaled as described in text. The

average of 20 stalactites is shown, compared with the ideal �black curve�.

FIG. 13. Residuals of the fit to ideal shape, from Fig. 12.

083101-11 Stalactite growth as a free-boundary problem Phys. Fluids 17, 083101 �2005�

 



 62

rium,” Rev. Mod. Phys. 65, 851 �1993�.
6
H. W. Franke, “The theory behind stalagmite shapes,” Stud. Speleol. 1, 89

�1965�.
7
N. Ogawa and Y. Furukawa, “Surface instability of icicles,” Phys. Rev. E

66, 041202 �2002�.
8
K. Ueno, “Pattern formation in crystal growth under parabolic shear flow,”

Phys. Rev. E 68, 021603 �2003�.
9
K. Ueno, “Pattern formation in crystal growth under parabolic shear flow.

II.” Phys. Rev. E 69, 051604 �2004�.
10

C. A. Hill, “On the waves,” Sci. News �Washington, D. C.� 163, 111

�2003�.
11

M. B. Short, J. C. Baygents, J. W. Beck, D. A. Stone, R. S. Toomey III,

and R. E. Goldstein, “Stalactite growth as a free-boundary problem: A

geometric law and its platonic ideal,” Phys. Rev. Lett. 94, 018510 �2005�.

12
Final Report: Environmental and Geologic Studies for Kartchner Caverns

State Park, edited by R. H. Beucher �Arizona Conservation Projects, Tuc-

son, AZ, 1992�.
13

M. Gage and R. S. Hamilton, “The heat equation shrinking convex plane-

curves,” J. Diff. Geom. 23, 69 �1986�.
14

R. C. Brower, D. A. Kessler, J. Koplik, and H. Levine, “Geometrical

models of interface evolution,” Phys. Rev. A 29, 1335 �1984�.
15

D. A. Kessler, J. Koplik, and H. Levine, “Pattern selection in fingered

growth phenomena,” Adv. Phys. 37, 255 �1988�.
16

D. A. Stone and R. E. Goldstein, “Tubular precipitation and redox gradi-

ents on a bubbling template,” Proc. Natl. Acad. Sci. U.S.A. 101, 11537

�2004�.
17

L. C. Huff, “Artificial helictites and gypsum flowers,” J. Geol. 48, 641

�1940�.

083101-12 Short, Baygents, and Goldstein Phys. Fluids 17, 083101 �2005�



 63

APPENDIX C: ICICLE GROWTH 

CODEN: PHFLE6
ISSN: 1070-6631 pof.aip.org

Editors: John Kim
University of California, Los Angeles, CA

L. Gary Leal
University of California, Santa Barbara, CA

Associate Editor for Letters: Andrea Prosperetti
Johns Hopkins University, Baltimore, MD

Distinguished Editor „1982–1997…: Andreas Acrivos

Founding Editor „1958–1981…: François N. Frenkiel

Associate Editors

Term ending 31 December 2006
H. Choi (Seoul National University, Seoul, South Korea)
E. J. Hinch (University of Cambridge, Cambridge, UK)
G. M. Homsy (University of California, Santa Barbara, CA)
J. R. Lister (University of Cambridge, Cambridge, UK)
P. A. Monkewitz (Swiss Federal Inst. of Tech., Lausanne)

Term ending 31 December 2007

J. P. Gollub (Haverford College, Haverford, PA)

J. Koplik (Levich Institute, New York, NY)

P. Moin (Stanford University, Stanford, CA)

S. B. Pope (Cornell University, Ithaca, NY)

A. Prosperetti (Johns Hopkins University, Baltimore, MD)

Term ending 31 December 2008
R. P. Behringer (Duke University, Durham, NC)
J. B. Grotberg (University of Michigan, Ann Arbor, MI)
R. D. Moser (University of Texas, Austin, TX)
E. S. G. Shaqfeh (Stanford University, Stanford, CA)
G. J. F. van Heijst (Tech. Univ. Eindhoven, The Netherlands)

Editorial Office Staff

Marjorie Hayes, Assistant to the Editor (UCSB)

E-mail: pof@engineering.ucsb.edu

Stacey Morse, Assistant to the Editor (UCLA)

E-mail: pof@ea.ucla.edu

E-mail Production Staff at AIP: phf@aip.org

Information for Authors

Submissions: Submit manuscripts online at http:ÕÕpof.peerx-

press.org. If preferred, mail printed manuscripts (3 copies) to Editorial

Office, Physics of Fluids, Department of Chemical Engineering, Uni-

versity of California, Santa Barbara, CA 93106. Tel.: 805-893-3200;

E-mail: pof@engineering.ucsb.edu. Submission implies that the

manuscript has not been published previously and is not currently

submitted for publication elsewhere. For detailed Information for Con-

tributors, visit http:ÕÕpof.aip.orgÕpofÕsubmit.jsp.

Publication Charge: The American Institute of Physics does not re-

quire page charges for this Journal.

Open Access: Through participation in Author Select SM and pay-

ment of a $1500 fee, authors may choose open access publication for
their accepted papers. See information during manuscript submission
at http:ÕÕpof.peerx-press.org.

Free Color Online: If authors supply usable color graphics files in
time for the production process, color will appear in the online journal
free of charge. Authors or their institutions must bear the cost of any
color they wish to use in print. A fixed rate of $650 for the first color
figure and $325 for each additional color figure applies for color in
print. For multipart figures, a single charge will apply only if all parts
are submitted as a single piece of artwork.

Reprints: Order reprints with or without covers only in multiples of 50
from AIP, Circulation & Fulfillment/Reprints, Suite 1NO1, 2 Huntington
Quadrangle, Melville, NY 11747-4502; Fax: 516-349-9704; Tel.: 800-
344-6909 (U.S. & Canada), or 516-576-2270.

Supplemental Material may be deposited with AIP’s Electronic Phys-
ics Auxiliary Publication Service (EPAPS), a low-cost online deposi-
tory. For a nominal fee, authors may submit multimedia, data tables,
text, etc. Address requests to the Editor; for additional information,
see http:ÕÕwww.aip.orgÕpubservsÕepaps.html.

Online Status Inquiry: During the production process, authors may
access information about their accepted manuscripts at http:ÕÕ

www.aip.orgÕmsinqÕstatus.html.

Comments: Direct comments on the journal or editorial process to

Doreene Berger, Editorial Operations, AIP, Suite 1NO1, 2 Huntington

Quadrangle, Melville, NY 11747-4502; Tel.: 516-576-2444; Fax: 516-

576-2450; E-mail: dberger@aip.org.

Physics of Fluids is devoted to the publication of original theoretical, computational, and
experimental contributions to the dynamics of gases, liquids, and complex or multiphase
fluids. It is published monthly by the American Institute of Physics (AIP).

2006 Subscription Prices
Institutions: For information, visit http:ÕÕlibrarians.aip.org. Institutional rates for Phys.

Fluids alone and in combination with Phys. Plasmas may be found online at
http:ÕÕwww.aip.orgÕjournal_catalogÕAIP2006NonmemberRateFixed.pdf, or contact AIP
Customer Services at subs@aip.org [Tel.: 800-334-6902 (U.S. & Canada) or 516-576-
2270; Fax: 516-349-9704].

Members: The following rates are available to all individual members of AIP Member and
Affiliate Societies:

Non-U.S. Optional

U.S. (Surface) Air

Print & online Phys. Fluids alone $252 $307 $337

With Phys. Plasmas $428 $533 $593

Microfiche & online Phys. Fluids alone $252 $307 $337

With Phys. Plasmas $428 $533 $593

Online only Phys. Fluids alone $88 $88 $88

With Phys. Plasmas $158 $158 $158

Extended backfile
access

Online access covers 2001–2006; for access to backfiles from Vol. 1
(1958) to present, add to subscription price: $45 (for Phys. Fluids

alone) or $65 (for both Phys. Fluids & Phys. Plasmas).

Annual CD-ROM Add to subscription price: $30 (for Phys. Fluids alone) or $60 (for
both Phys. Fluids & Phys. Plasmas).

Single issue: $225 for back issues for 2006

Prior years (Members): $40 Prior years (Institutions): $225

Additional Availability
Online Access: Physics of Fluids is available online at http:ÕÕpof.aip.org.
Microform: Physics of Fluids is available on microfiche issued at the same frequency as the
printed journal, and annually on microfilm. Direct requests to AIP, Circulation & Fulfillment/
Single Copy Sales, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-4502; Fax:
516-349-9704; Tel.: 800-344-6902 (U.S. & Canada) or 516-576-2270.
Document Delivery: Copies of journal articles can be ordered for online delivery from
DocumentStore, AIP’s online document delivery service (http:ÕÕwww.documentstore.org).

Customer Service
Subscription Orders and Renewals should be addressed to American Institute of Physics,
P.O. Box 503284, St. Louis, MO 63150-3284. Tel.: 800-344-6902 (U.S. & Canada) or 516-
576-2270; Fax: 516-349-9704; E-mail: subs@aip.org. Allow at least six weeks advance no-
tice.
Inquiries, Address Changes, Claims, Single Copy Replacements, and Back Volumes:

For address changes, please send both old and new addresses and, if possible, include the
mailing label from a recent issue. Missing issue requests will be honored only if received
within six months of publication date (nine months for Australia & Asia). Single copies of a
journal may be ordered and back volumes are available in print, microfiche, or microfilm.
Contact AIP Customer Services at 800-344-6902 (U.S. & Canada) or 516-576-2270; Fax:
516-349-9704; E-mail: subs@aip.org.
Reprint Billing: Contact AIP Publication Charge & Reprints/CFD, Suite 1NO1, 2 Huntington
Quadrangle, Melville, NY 11747-4502; Tel.: 800-344-6909 (U.S. & Canada) or 516-576-2270;
E-mail: pcr@aip.org.

Rights and Permissions
Copying: Single copies of individual articles may be made for private use or research. Au-
thorization is given to copy articles beyond the free use permitted under Sections 107 and 108
of the U.S. Copyright Law, provided that the copying fee of $23.00 per copy per article is paid
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA, http://
www.copyright.com. (Note: The ISSN for this journal is 1070-6631.)
Authorization does not extend to systematic or multiple reproduction, to copying for promo-
tional purposes, to electronic storage or distribution, or to republication in any form. In all such
cases, specific written permission from AIP must be obtained. Note: Copies of individual
articles may also be purchased online via AIP’s DocumentStore service (http://
www.documentstore.org).
Other Use: See journal home page for author’s web posting guidelines. Permission is
granted to quote from the journal with the customary acknowledgment of the source. Repub-
lication of an article or portions thereof requires formal permission from AIP and may be
subject to fees. Permission may be obtained online using Rightslink. Simply click on the
Rightslink icon/Permission for Reuse link found in the article abstracts. You may also address
requests to: AIP Office of Rights and Permissions, Suite 1NO1, 2 Huntington Quadrangle,
Melville, NY 11747-4502; Fax: 516-576-2450; Tel.: 516-576-2268; E-mail: rights@aip.org.

Digital Object Identifier „DOI…: Each archival article published is assigned a unique DOI that
serves to identify the article in a digital environment. In print, the DOI appears at the end of
each abstract.

Physics of Fluids (ISSN: 1070-6631) is published monthly by the American Institute of
Physics. The 2006 print � online base price is US$2445. POSTMASTER: Send address
changes to Physics of Fluids, AIP, Suite 1NO1, 2 Huntington Quadrangle, Melville, NY 11747-
4502. Periodicals postage rate paid at Huntington Station, NY 11746, and additional mailing
offices.
Printed on Dependoweb 45# paper, pH 8.0.

Copyright © 2006 American Institute of Physics. All rights reserved.

 
Reprinted with permission from M.B. Short, J.C. Baygents, and R.E. Goldstein, Physics of Fluids 18, 
083101 (2006).  Copyright 2006, American Institute of Physics. 



 64
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The growth of icicles is considered as a free-boundary problem. A synthesis of atmospheric heat

transfer, geometrical considerations, and thin-film fluid dynamics leads to a nonlinear ordinary

differential equation for the shape of a uniformly advancing icicle, the solution to which defines a

parameter-free shape which compares very favorably with that of natural icicles. Away from the tip,

the solution has a power-law form identical to that recently found for the growth of stalactites by

precipitation of calcium carbonate. This analysis thereby explains why stalactites and icicles are so

similar in form despite the vastly different physics and chemistry of their formation. In addition, a

curious link is noted between the shape so calculated and that found through consideration of only

the thin coating water layer. © 2006 American Institute of Physics. �DOI: 10.1063/1.2335152�

The formation of patterns in snow and ice has been a

source of fascination since antiquity. As early as 1611, Jo-

hannes Kepler
1

sought a physical explanation for the beauti-

ful forms of snowflakes. While attention has been lavished

upon snowflakes ever since,
2

their wintry cousins, icicles,

have remained largely ignored. The basic mechanisms of

icicle growth are well known,
3–5

but there are few math-

ematical analyses describing their long, slender forms, most

notably those of Makkonen
3

and of Szilder and Lozowski.
4

Icicle surfaces are typically covered with ripples a few cen-

timeters in wavelength, but only recently
6–8

has theoretical

work begun to address the underlying dynamic instability

that produces them. On a more basic level, the growth of

dripping icicles has not been studied from the perspective of

a true free-boundary approach.

As one can see in Fig. 1, icicles and stalactites—the

iconic structures found in limestone caves
9
—can bear a strik-

ing resemblance, particularly insofar as they evince a slightly

convex carrot-like form that is distinct from a cone. Of

course visual similarity does not imply mechanistic similar-

ity, but there is reason to think that a common mathematical

structure might link the two phenomena.
10

In each case, the

evolving solid structure is enveloped by a thin flowing layer

of fluid which regulates the rate of growth. For stalactites,

this is the coating water film flowing down the surface in

which carbon dioxide is produced and through which it dif-

fuses. In icicles there is a similar water layer, but the con-

trolling fluid is the upward flowing natural convection

boundary layer in the surrounding air through which latent

heat is transported by diffusion and convection.

Recent work
11,12

examining stalactite growth as a free

boundary problem established a novel geometrical growth

law based on the coupling of thin-film fluid dynamics and

calcium carbonate chemistry.
13–15

Numerical studies showed

an attractor in the space of shapes whose analytical form was

determined and found to compare very favorably with that of

natural stalactites. Is there an analogous ideal shape for

icicles? It is tempting to view icicle growth as a classic

Stefan problem, as explored extensively for solidification

from the melt.
16

There, growth is controlled by a quasistatic

diffusive field and the growth rate is determined by a gradi-

ent of that variable. However, such systems generally lack

the previously mentioned thin layer of moving fluid �water or

air� that separates the developing solid from its surroundings,

and thus they do not conceptually match the conditions of

growth. Exceptions occur, for instance, in the presence of

surface premelting.
17

One context in which progress has

been made is the formation of “ice stalactites,” hollow tubu-

lar structures formed below sea ice as salt is rejected during

solidification,
18,19

but these formations are quite distinct from

typical icicles. Here, we suggest an approach to the problem

of icicle growth which synthesizes geometrical principles,

heat flow in the water and atmosphere, and thin-film fluid

dynamics, to arrive at the existence of an ideal growing

shape for icicles. This approach can be viewed as a generali-

zation of the important works mentioned above
3,4

to a true

free-boundary formulation. The ideal growing shape found

here compares well with observations. Interestingly, the

shape far from the tip has the same mathematical form as

that recently derived
11,12

for the growth of stalactites.

We first consider the water layer flowing down the sur-

face of a growing icicle to set some initial scales. The volu-
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metric flow rate Q over icicles is typically
3,20

on the order of

tens of milliliters per hour ��0.01 cm3 / s�, and icicle radii

are usually in the range of 1–10 cm. To understand the es-

sential features of the flow, consider a cylindrical icicle of

radius r, over the surface of which flows an aqueous film of

thickness h �Fig. 2�. Since h�r over nearly the entire icicle

surface, the velocity profile in the layer may be determined

as that flowing on a flat surface. Furthermore, we expect the

Reynolds number to be low enough that the Stokes approxi-

mation is valid. If y is a coordinate normal to the surface and

� is the angle that the tangent vector t̂ makes with respect to

the horizontal, then the Stokes equation for gravity-driven

flow is �wd2u /dy2=g sin �, where g is the gravitational ac-

celeration and �w=0.01 cm2 / s is the kinematic viscosity of

water. Enforcing no-slip and stress-free boundary conditions

at the solid-liquid and liquid-air interfaces, the thickness is

h = � 3Q�w

2�gr sin �
�1/3

. �1�

Using typical flow rates and radii, we deduce a layer

thickness that is tens of microns and surface velocities

us��gh2 /2�w�sin � below several mm/s, consistent with

known values,
3,20

yielding Re=0.01–0.1, well in the laminar

regime as anticipated. At distances from the icicle tip com-

parable to the capillary length �several millimeters�, the com-

plex physics of pendant drop detachment takes over and the

thickness law �1� ceases to hold.

Of course, if the icicle is growing, the volumetric flux Q

must vary along the arc length s of the icicle as water is

converted to ice. With the icicle profile described by r�z�
�Fig. 2� and the growth velocity normal to the ice at any

point being vg, Q varies along the surface as

dQ

ds
= 2�rvg, �2�

the positive sign on the right-hand side reflecting the choice

of origin at the tip, with s increasing upward. We seek to find

a final answer in the form of a uniformly translating

shape,
11,12

for which every point on the icicle must grow at a

rate such that vg=vt cos �, where vt is the growth velocity of

the tip, usually millimeters per hour ��10−4 cm/s�3,20 �given

the complexities of droplet detachment,
3

the tip velocity here

will be considered a parameter of the theory�. Therefore, we

substitute this rule into �2�, using dr=ds cos �, and find that

an exact integration may be performed, yielding

Q = Qt + �r2
vt, �3�

where Qt is the flow rate at the icicle’s tip. This result, which

neglects evaporation, conforms to the obvious fact that, for a

given Q, Qt will eventually approach zero as the icicle be-

comes so long as to allow all of the feeding water to freeze

before it reaches the tip. For further analysis, we will only

consider the growth of icicles up to this point, and not be-

yond, and only consider growth into a calm environment.

Turning now to heat transport, note that the curvature of

the icicle surface is sufficiently small everywhere that the

Gibbs-Thompson correction
21

to the melting temperature Tm

is negligible. Thus, the temperature of the water at the ice-

water interface is well-approximated as Tm along the entire

icicle, neglecting the tip. Furthermore, since most icicles

possess an unfrozen liquid core,
3–5

heat does not travel radi-

ally outward from the center of the icicle, as it would if the

core were solid and the temperature inside were decreasing

over time. Hence, any flux of heat present at the ice-water

interface consists solely of latent heat being removed as the

water changes phase. The issue of advective heat transport

by the flowing water is addressed by considering the Peclet

number Pe=ush /�w, where �w�10−3 cm2 / s is the thermal

diffusivity of water. Using our previous estimates for the

flow velocity us and thickness, we find Pe�0.1–1, indicat-

ing that energy transport down the icicle is generally subor-

dinate to conduction of heat across the water layer. The heat

flux across the water, then, is Fw=�w�Tm−Ti� /h, where �w is

the thermal conductivity of water and Ti, the temperature at

the air-water interface, is found below.

The rate-limiting, and hence, controlling, step in growth

occurs once the heat has traversed the water layer and must

then be transported through the air surrounding the icicle.

This transport can be greatly influenced by the presence of

FIG. 1. �Color online� Icicles and stalactites. �a� A collection of icicles �Ref.

23�. �b� Stalactites in Kartchner Caverns, Benson, AZ.

FIG. 2. Features of a hanging axisymmetric shape used in development of

the theory. The flowing water layer, not to scale, is much thinner than the

rising thermal boundary layer.
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forced convection, as considered in previous works,
3,4

but we

shall ignore this in the present study, assuming a calm envi-

ronment for growth. Instead, we will consider natural con-

vection, such as found in the study by Makkonen.
3

As is well

known, objects warmer than their surroundings create rising

thermal boundary layers in the adjacent atmosphere due to

the buoyancy of the heated surrounding air. Similarity solu-

tions for the coupled Navier-Stokes and heat transport equa-

tions in the Boussinesq approximation can provide the basis

for understanding this boundary layer. For instance, for a flat,

vertical, isothermal plate, solutions show that the rising

warm air is confined to a boundary layer whose thickness �
as a function of the vertical coordinate z is

22

� = C�� z

�
�1/4

, with � 	 � �a
2

g�	T
�1/3

, �4�

where C is a dimensionless constant that depends on the

Prandtl number of air �0.68� and is of order unity,

�a�0.13 cm2 / s is the kinematic viscosity of air, ��3.7


10−3 K−1 is the volumetric coefficient of expansion for air,

and 	T is the temperature difference between the plate and

the ambient temperature Ta far away. For a temperature

difference of 10 K the characteristic length scale

�
0.01–0.1 cm.

To justify our future use of �4� to approximate the

boundary layer thickness for our icicle, we submit the fol-

lowing. First, using a temperature difference of 10 K, one

finds a boundary layer thickness on the order of a few mil-

limeters to a centimeter, much greater than the thickness of

the water layer on a typical icicle, but less than a typical

icicle radius, so that flatness is approximated. Second, the

peak velocity of the warm air in the layer is

up �
2

3
�g	T�z , �5�

around 5–10 cm/s, much greater than the downward water

velocity, so the no slip condition used in the flat plate analy-

sis is nearly attained. Third, the atmospheric heat flux can be

written as Fa=�a�Ti−Ta� /�, where �a is the thermal conduc-

tivity of air, differing from the exact form only by the mul-

tiplication of an order one constant. If we equate this heat

flux with that through the water layer, which we previously

described, one finds that Ti is given by

Ti = Tm − �Tm − Ta�
h�a/��w

1 + h�a/��w

. �6�

On account of the vast difference in scale between h and �
mentioned above, the ratio h�a /��w�0.01, so Ti is lower

than Tm by only 10−3–10−2 K. Hence, from the view of at-

mospheric heat transport, the icicle walls are essentially iso-

thermal at Tm �although the tip is cooler
3�. Finally, we note

that �4� can be used to describe a slightly nonvertical plate by

simply replacing g with g cos � and z with z / cos � �the arc

length along the plate�. Since, barring the tip region, an ici-

cle’s surface is nearly vertical and has a very slowly varying

slope, this is a valid approximation in our case; we treat the

order one factor of cos � as a constant and fold it into the

parameter C. A more sophisticated treatment would account

for the effects of wall curvature.
3

At this point, we are in a position to derive a formula for

the growth velocity vg of the icicle’s surface. We divide the

heat flux as calculated through the atmospheric boundary

layer by the latent heat of fusion per volume L of water

�334 J /cm3� to obtain the velocity

vg = vc��

z
�1/4

, �7�

where vc is a characteristic velocity given by

vc 	
�a	T

LC�
, �8�

and is, with 	T=10 K, around 10−4 cm/s, which is in good

agreement with the known velocities cited earlier. To find

the equation governing the icicle profile, we enforce the

condition for uniformly translating shapes, vg=vt sin �, upon

�7� and scale the variables r and z both by the factor

a=��vc /vt�
4, thereby defining the new dimensionless vari-

ables � and 
. After rewriting trigonometric functions in

terms of the slope of the profile ��, one finds the equation

�� =
1

�
1/2 − 1
, �9�

which can be exactly integrated to yield the final expression

for our ideal icicle shape,

� =
4

3
�
1/2 + 2��
1/2 − 1. �10�

This shape is shown in Fig. 3�a�. Note that this shape at

large 
 goes as ��
3/4 and therefore the thickness of the

thermal boundary layer relative to the icicle radius scales as

� /r�
−1/2 and the two-dimensional boundary layer calcula-

tion becomes ever more satisfactory further up the icicle,

albeit slowly.

As promised, this asymptotic power law is identical to

that found in the case of stalactites,
11,12

finally explaining

their strikingly similar appearances. Furthermore, if we

evaluate this asymptotic form at some point on the surface

��* ,
*� where the aspect ratio �length/width� is A=
* /�*,

then the shape can be rewritten as 
 /
*��� /�*�4/3, a univer-

sal, self-similar form. Hence, we can compare our ideal

shape to natural icicles by simply finding the correct aspect

ratio, or, equivalently, the correct scaling factor a, that best

equates the two forms. The results of such comparisons are

seen in Figs. 3 and 4. Figures 3�b�–3�d� show overlays of the

appropriately scaled theoretical shape with three images of

natural icicles. To find the appropriate scaling, each image

was passed through an edge-detection algorithm to extract

the profile r�z�. Each profile was then compared to the ideal

form through a least-squares analysis to determine the best fit

a. For the more quantitative analysis of Fig. 4, we first found

a for each of the eight icicle images, then scaled the image

profiles by this best-fit factor. All eight of the now-

dimensionless profiles were then averaged together, forming

the data points and associated error bars seen in the graph in

Fig. 4, which are to be compared with the theoretical shape
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shown. Clearly, there is good agreement between the two,

with no obvious systematic deviations present. On the far

right, possible ripples can be seen as the data oscillates

around the theoretical curve. Moreover, the shape is quite

distinct from a conical geometry; indeed, an analogous least-

squares fit of the data to a conical shape displays quite sig-

nificant systematic deviations. Of course, controlled experi-

ments on the growth of icicles are needed to check in detail

various aspects of the theory, such as the assumption that a

traveling shape is indeed an attractor of the dynamics.

As a final interesting side note, we now calculate the

ideal shape by analyzing the growth velocity using the heat

flux through the thin water layer rather than the air. First, let

us look at the thickness law �1� in conjunction with the

depletion predicted in �3�. Clearly, at large �, the fluid layer

thickness will grow as

h � �3vta�w�

2g sin �
�1/3

. �11�

Using this and the ideal shape we have calculated, the ratio

of h to � in this regime must then look like

h

�
� �2�wavt

4

g
�1/3

L

�a	T
. �12�

So, if we substitute this ratio into �6�, we see that, asymp-

totically, the temperature drop across the water layer goes to

a fixed value of

	Tw → �2�wavt
4

g
�1/3

L

�w

, �13�

which is on the order of 10−3 K, as previously indicated. It is

curious that this factor turns out as it does; for a different

thickness law �1�, as could be the case for a non-Newtonian

fluid, the temperature drop could either approach zero or

even increase at large 
. In any case, we can now use this

	Tw, along with the heat flux through the water layer, to find

that, asymptotically, the profile 
� should follow the scaling

law


� � �3

4
��1/3

. �14�

Equation �14� is another interesting result, as it shows that

the shape obtained by a method that focuses on the liquid

film yields the same shape as that found from the foregoing

analysis of the natural convection boundary layer. We are

unsure at this point whether it is mere happenstance that

these two methods agree as they do, or perhaps this four-

thirds scaling law has a deeper underlying significance in this

class of problems.

Clearly, the scenario presented here, by which a free

boundary dynamics for icicle growth is derived, contains a

number of simplifications and approximations whose quanti-

tative accuracy merits further study. Chief among these is the

use of a boundary layer theory which assumes a flat and

vertical surface. Both of these assumptions are justifiable

only far away from the icicle’s tip. A full numerical study

would likely prove most illuminating. We expect the analysis

presented here to serve as a basis for further understanding of

ice structures, including axisymmetric perturbations such as

the ripples so commonly found on icicles, as well as strongly

nonaxisymmetric forms such as the sheets which are analo-

gous to “draperies” in limestone caves. In this regard, recent

work on solidification on surfaces of arbitrary curvature
24

may prove quite relevant.

The authors thank J. G. Dash, S. R. Morris, J. S.

Wettlaufer, and M. G. Worster for important discussions, and

FIG. 3. �Color online� Ideal shape of an icicle and comparison with natural

icicles. �a� Ideal shape in dimensionless units of radius and height. �b�–�d� A

selection of natural icicles �Ref. 23� each with the appropriately scaled ideal

form overlaid.

FIG. 4. �Color online� A comparison between the theoretical shape and

natural icicles. The solid line represents the shape as calculated in the text,

while the data points and error bars represent the averaging of the scaled

profiles of eight icicles. In order to perform this averaging, each icicle’s

profile was scaled by the appropriate factor a through a least squares analy-

sis. Error bars generally increase with 
 due to the fact that there are fewer

icicles with appropriate aspect ratios at those points. After 
=5
106 only

one icicle is represented, and the displayed error bars represent discretiza-

tion uncertainties.
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Evolution from unicellular organisms to larger multicellular ones

requires matching their needs to the rate of exchange of molecular

nutrients with the environment. This logistic problem poses a

severe constraint on development. For organisms whose body plan

is a spherical shell, such as the volvocine green algae, the current

(molecules per second) of needed nutrients grows quadratically

with radius, whereas the rate at which diffusion alone exchanges

molecules grows linearly, leading to a bottleneck radius beyond

which the diffusive current cannot meet metabolic demands. By

using Volvox carteri, we examine the role that advection of fluid

by the coordinated beating of surface-mounted flagella plays in

enhancing nutrient uptake and show that it generates a boundary

layer of concentration of the diffusing solute. That concentration

gradient produces an exchange rate that is quadratic in the radius,

as required, thus circumventing the bottleneck and facilitating

evolutionary transitions to multicellularity and germ–soma differ-

entiation in the volvocalean green algae.

advection � multicellularity � Volvox

The motility of microorganisms is primarily thought to enable
access to optimum environments. Yet some species of co-

lonial motile algae thrive in restrictive habitats such as shallow
evanescent puddles, all the while paddling energetically with
their f lagella. What is the significance, beyond locomotion, of
this collective coordinated beating of flagella? Algal metabolism
requires exchange, between organisms and water, of small
molecules and ions such as CO2, O2, and PO4

3�. Rapidly growing
organisms that are ‘‘large’’ in the sense explained below must
augment diffusion with effective modes of transport from re-
mote reaches of their environment (1). The volvocine green
algae (2–5) can serve as a model system for understanding how
exchange of nutrients and wastes varies with organism size, as in
the transition from unicellular to ever-larger multicellular col-
onies. The Volvocales range from the unicellular Chlamydomo-
nas to large colonies of cells, eventually leading to Volvox,
comprising 1,000–50,000 cells (Fig. 1). They include closely
related lineages with different degrees of cell specialization in
reproductive and vegetative function (germ–soma separation),
which seem to represent ‘‘alternative stable states’’ (6). Phylo-
genetic studies show that these transitions in cell specialization
have occurred multiple times, independently (7–9), to geomet-
rically and functionally similar configurations, suggesting that
there is a selective advantage to that morphology. The volvo-
calean range of sizes, �3 orders of magnitude, enables the study
of scaling laws; from a theoretical perspective, the spherical form
of the Volvocales simplifies mathematical analysis.

Volvox, the largest colonies in the lineage, are formed by sterile
bif lagellated Chlamydomonas-like somatic cells, with outwardly
oriented flagella, which are embedded at the surface of a
transparent extracellular matrix, which also contains the germ
cells that develop into flagellated daughter colonies. In some
species, germ cells start f lagellated, but after their first mitotic
division the flagella are absorbed (e.g., V. aureus), whereas in
others (e.g., V. carteri) the germ cells are never flagellated.

Directional swimming due to the coordinated beating of these
flagella also is accompanied by rotation; Volvox is from the Latin
‘‘volvere,’’ to roll (2). Bell (10) and Koufopanou (11) suggested
that the extracellular matrix is a storehouse (‘‘source’’) of
nutrients for the germ cells (‘‘sink’’). They interpret this source–
sink coupling as a mechanism that increases the uptake of
nutrients by the developing germ cells located within the colony.
Moreover, they showed (11) that germ cells from Volvox carteri,
when liberated from their mother colony and freely suspended
in the growth medium, grow more slowly than those embedded
in intact colonies. Those experimental studies did not consider
the external f low created by collective flagellar beating of the
mother colonies. Our studies (3, 4) were designed to investigate
the effects of such fluid flows and showed in fact that these flows
positively influence germ-cell growth rates. Indeed, externally
supplied flows can replace those due to flagella and return germ
cells to normal growth rates. Flagella obviously confer motility;
we infer that they also play a subtle but crucial role in metab-
olism. Niklas (1) suggested that as organisms increase in size,
stirring of boundary layers, yielding transport from remote
regions, can be fundamental in maintaining a sufficient rate of
metabolite turnover, one not attainable by diffusive transport
alone. Yet there has not been a clear quantitative analysis of this
putative connection between flagella-driven stirring and nutri-
ent uptake. Here we investigate the hypothesis that those flows
facilitate, even ‘‘encourage,’’ the transition to large multicellular
forms. We analyze the idealized problem of the scaling that
relates nutrient uptake to body size. Measurements of the actual
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Fig. 1. Volvocine green algae arranged according to typical colony radius R.

The lineage ranges from the single-cell Chlamydomonas reinhardtii (A), to

undifferentiated Gonium pectorale (B), Eudorina elegans (C), to the soma-

differentiated Pleodorina californica (D), to the germ–soma differentiated V.

carteri (E), V. aureus (F), and even larger (e.g., V. gigas with a radius of 1 mm).

In species in which two cell types can be identified, the smaller are somatic cells

and the larger are reproductive cells. Note that the number of cells in Volvox

species ranges from 1,000 (e.g., V. carteri) to 50,000 (e.g., V. barberi).
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f low fields generated by colonies confirm the analysis. Because
we also aim to understand the physical constraints leading to
germ–soma differentiation, we investigate a body plan without
such differentiation and examine its failure to deal with those
constraints.

Results

Bottleneck Radius. Consider the case in which only molecular
diffusion in the suspending fluid governs transport (uptake or
rejection) of a chemical species whose concentration is C(r),
where r is the radial distance from the center of the colony. When
more than even a few percent of the colony surface is covered
by an array of absorbers or emitters, the diffusion-limited rate is
well approximated by that of a sphere uniformly covered with
absorbers�emitters (12). We now focus, for simplicity, on nutri-
ent acquisition. By Fick’s law, a gradient in concentration yields
a flux. We define the uptake rate or current at the surface of the
sphere as the integral of the flux over the area of the sphere. Our
sign convention is that the current is positive if the sphere takes
up nutrients. Therefore, if C� is the concentration far from the
colony of radius R, then the steady-state concentration is C(r) �
C�(1 � R�r). Furthermore, if D is the diffusion constant and dS
is the element of surface area of the colony, then the inward
current Id � D�dS(�C��r) is linear in the colony radius R

Id � 4�DC�R . [1]

The timescale �D on which this steady-state profile develops from
an initially uniform concentration is �D � R2�D. For a typical
colony of radius 200 �m and diffusion constant of D � 2 � 10�5

cm2�s, �D � 20 s, which is very long compared with the flagellar
beat period but short compared with the life cycle. The current
(Eq. 1) can be compared with the metabolic requirements of a
colony with surface-mounted cells

Im � 4�R2� , [2]

where � is the time-dependent nutrient demand rate per unit
area, including the requirements of internal ‘‘tissue’’ (e.g., germ
cells), and storage by the extracellular matrix. The availability by
diffusion can exceed the nutritional requirements at small radii.
At sizes greater than the bottleneck radius

Rb �
DC�

�
, [3]

at which Id � Im, diffusion is insufficient to feed the organism
(Fig. 2A). The diffusive rejection of waste products also is limited

by a bottleneck radius of the same form as Eq. 3, with � signifying
the forced emission rate of waste and C� replaced by the
difference between a molecular waste concentration at the
surface and at infinity.

Estimation of the bottleneck radius includes several consid-
erations. First, the demand�consumption rate � varies with time
and environmental parameters (e.g., light, temperature, nutrient
availability) during the life cycle of Volvox. Second, there is
uncertainty as to which of the key nutrients is limiting. Third, it
is arguable whether the boundary condition for waste rejection
at the colony surface involves a specified flux or a concentration.
Mindful of these difficulties, we can make a rough estimate using
parameters appropriate for either phosphate (13) (D � 10�5

cm2�s, C� � 6 � 1014 cm�3, and � � 1012 cm�2
�s�1) or oxygen

(D � 2 � 10�5 cm2�s, C� � 1017 cm�3, and � � 1014 cm�2
�s�1)

measured in V. carteri using standard biological oxygen demand
(BOD) bottles. We find Rb � 50–200 �m. Intriguingly, the low
range of the estimated Rb is comparable with Pleodorina (Fig.
1D), the smallest species where soma differentiation occurs; the
high range is comparable with the smallest germ–soma differ-
entiated Volvox colonies (e.g., Fig. 1E). Note that Pleodorina is
considerably smaller than Volvox. In the latter, the number of
flagellated surface-mounted somatic cells is much higher, and
germ cells, which are nonflagellated, lie in the interior of the
colony.

As a consequence of the dual role played by the flagellar basal
bodies as both anchoring points for flagella and as microtubule
organizing centers active in cell division, undifferentiated colo-
nies are subject to the ‘‘f lagellation constraint’’ (5, 14), which
prevents the use of flagella during cell division. It is therefore
appropriate that the largest colonies without true germ–soma
differentiation would have a maximum size comparable with the
bottleneck radius. For the nonmotile part of the life cycle, which
also has the greatest metabolic needs, these colonies would just
barely be able to obtain sufficient nutrients by diffusion alone.

Flows, Advection, and Nutrient Uptake. How does advection, the
transport of solutes by flow, modify this picture? The governing
advection–diffusion equation is

�C

�t
� u� ��� C � D�2C , [4]

where u� �
��C is the advective rate of change of the concentration

field C(r�, t), and D�2C is the diffusive rate of change. Here, the
vector u�(r�, t) is the spatially and temporally varying fluid
velocity. The standard measure of the competition between
advection and diffusion is the (dimensionless) Péclet number

Fig. 2. Molecular currents (molecules per second) and requirements. (A) A schematic diagram illustrating the existence of the diffusive bottleneck Rb. When

the metabolic demand current (solid line), which is quadratic in organism radius R, exceeds the diffusive current (dashed line), which is only linear in R, the

metabolism is constrained by diffusion. (B) Log–log plot showing how the advective current (thick solid line) circumvents the diffusive bottleneck for the choice

	 
 Rb�Ra � 3.3. At radii greater than the advective radius Ra (Eq. 7), the advective current grows quadratically with R, allowing metabolic needs to be satisfied

for any arbitrary size.
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(15), which can be expressed in terms of a typical f low velocity
U and the sphere diameter 2R as

Pe �
2RU

D
. [5]

Our measurements (4) of the typical f luid velocity near Volvox
carteri (Fig. 1E) have shown that Pe can range from 100 to 300,
implying that diffusion is negligible compared with advection.
For large Pe, the absorption rate Ia generally is a power-law in
Pe, as a consequence of the boundary layer that forms near the
sphere’s surface. For the no-slip boundary condition at the
surface of a solid sphere, Acrivos and Taylor (16) showed that
Ia � RPe1/3 for large Pe. In important recent work, Magar et al.
(17, 18) found that the exponent changes when the boundary
condition allows slip; with a prescribed tangential f low, the
current is Ia � RPe1/2.

Because we seek the size dependence of the advective trans-
port, we require a model of the flow field created by the flagella.
It is impractical to calculate the detailed flow generated by the
array of flagella at the colony surface. Instead, we develop a
simple model in which the details of the flagella length, beating
frequency, and waveform are subsumed into a single averaged
parameter, the force per unit area f� that the spherical surface
exerts on the fluid. By using the measured value of the propulsive
thrust for V. carteri (3), we estimate f � 0.1 dyne�cm2, where we
have divided the experimentally determined total thrust force by
the area of a colony. Because we prescribe the force per unit area
(the shear stress), instead of the tangential f low at the surface of
the colony, our flow has crucial qualitative differences from
previous work (17, 18). Dimensional analysis shows that the
characteristic magnitude of the flow velocity U grows with
colony radius

U �
fR

�
, [6]

where � � 0.01 g�cm�s is the viscosity of water. When the
tangential f low velocity is prescribed, the flow is clearly inde-
pendent of R. In accord with observations (3), our model
predicts that larger colonies with the same average density swim
faster than smaller ones. For example, using our estimate of f and
a colony radius of R � 100 �m, we find U � 500 �m�s, which
is close to observed swimming speeds (3).

For an idealized model, we take the force per unit area to be
directed along lines of longitude, f� � f�̂ (see Fig. 3 for coordinate
system); it is straightforward to include an azimuthal component
of f� to allow for rotational motion as well (M.B.S., T.R.P., J.O.K.,
and R.E.G., unpublished data). Thus, the boundary conditions
at the surface of the colony are as follows: vanishing radial
velocity and the shear stress condition 	r� � �f, where 	r� is the
stress that the fluid exerts on the surface. Far from the colony,
the fluid velocity approaches either the swimming velocity U� �
�Uẑ for a freely swimming colony, or zero for a colony held in
place. Because inertia is unimportant at the scale of a colony,
we find the flow velocity u� by solving the Stokes equation ��p �
��2u� , where p is the pressure; the velocity field must also be
incompressible, ���u� � 0. The cylindrical symmetry of the
boundary conditions implies that the velocity field and pressure
may be represented by an expansion in Legendre polynomials
multiplying functions that are linear combinations of powers of
r. In a coordinate system moving at the speed of the colony, the
radial and polar velocities are ur � �U[(c � x�3)cos� � A(x, �)]
and u� � �U[�(d � x�3)sin� � B(x, �)], where x � r�R and A(x,
�) and B(x, �) are infinite sums of terms falling off with distance
as x�2 and higher powers. The precise characteristic velocity
whose dimensional scaling was shown in Eq. 6 is found to be U �
�fR�8�. The parameters c and d distinguish between free-

swimming colonies (c � d � 1) with no net force acting on them
and colonies held in place by an anchoring force (c � 1�x, d �
1�2x).

To test this model, we measured the flow fields around
colonies using methods described elsewhere (4), building on
earlier studies (19, 20) and summarized in Methods. A least-
squares fit of each data set was used to determine the velocity
scale U for each, and then each data set was normalized to the
maximum velocity. Pooling data on 10 colonies, Fig. 3 shows this
averaged velocity compared with the suitably normalized theo-
retical function; the two agree within the standard error of the
measurements, validating the idea of surface shear stress sup-
plied by the flagella.

We now examine in detail the nutrient uptake rate. Observe
from Eq. 5 that because the flow field in the model has a
characteristic velocity U that is proportional to the radius, the
Péclet number is proportional to R2. Because the Péclet number
itself is dimensionless, it can be expressed as the ratio of two radii
in the form Pe � (R�Ra)2 with

Ra � �4�D

�f
. [7]

In addition to the bottleneck radius Rb, this ‘‘advection radius’’
Ra serves as a second characteristic length scale in the system,
one not previously recognized. It is the length above which
advection overtakes diffusion, i.e., Pe � 1. With the estimated
parameters described above, we find Ra � 10 �m, similar to the
diameter of Chlamydomonas. The ratio 	 
 Rb�Ra characterizes
the onset of complexity in the Volvocales and is in the range
5–10. Note that Ra is comparable with the length of a flagellum,
the ‘‘stirring rod,’’ certainly a curious coincidence.

To understand the role of the advection radius in the rate of
molecular nutrient and waste exchange, we used the self-
generated flow field calculated above as the velocity u� in the
steady-state version of Eq. 4 to find numerically the concentra-
tion profile around a model colony. Fig. 4A shows the normalized

Fig. 3. Fluid flow near the surface of a colony. Inset shows geometry of the

experiment. The organism is held fixed by using a micropipette attached to the

posterior region, in the vicinity of the germ cells�daughter colonies (G�D),

away from the two stagnation points (SP) of the flow. The fluid flow gener-

ated by the colony is measured by using particle imaging velocimetry. Com-

parison between theoretical (solid curve) and average experimental values

(solid circles) of the tangential flow velocity near the organism’s surface is

plotted as a function of polar angle �. Measurements were made on 10

different organisms. For each, a least-squares fit to the theoretical velocity

field was performed to determine the single unknown parameter, the max-

imum tangential velocity. These data then were pooled by normalizing each

set to the fitted maximum velocity, ranging from 100 to 600 �m�s for the

variously sized colonies measured.
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concentration field C�C� near a swimming colony for a range of
Péclet numbers. When Pe � 1, the concentration field is only
slightly distorted from spherical symmetry, whereas for Pe �� 1,
a thin concentration boundary layer forms around the leading
edge of the sphere; furthermore, a solute plume, analogous to
the ‘‘tail’’ behind sedimenting marine snow (21), the organic
detritus falling from the upper layers of the ocean, extends to
ever-greater length. This plume of nutrient depletion or waste
product accumulation is left behind a swimming colony. As an
increasing Péclet number is associated with increasing radius, we
may imagine the three frames in Fig. 4A as corresponding to
organisms comparable in size with the advective radius, larger,
and then much larger. Because Ra is the measure of the size of
the boundary layer, the boundary layer width Ra�R, in units of
the colony radius, is proportional to Pe�1/2. Computations are
consistent with this scaling (Fig. 4B), where the boundary layer
thickness is taken to be the distance over which the scaled
concentration C�C� � 0.1 in front of the colony. The absorption
current Ia follows from Fick’s law as an integral, Ia � D�dS(�C�
�r), over S, the colony surface. We approximate �C��r � C��Ra

at the surface, yielding

Ia �
4�R2DC�

Ra

. [8]

The right-hand side of Eq. 8 also may be expressed as 4�DC�RPe1/2,
the same power law found by Magar et al. (17, 18), whose velocity
field included only the first few Legendre polynomial terms. The
key point here is that the quadratic dependence of the Péclet
number on radius (quite miraculously!) leads to a solute current
that scales with the surface area, just as required. Fig. 2B revisits the
competition between pure diffusive current and metabolic needs
first illustrated in Fig. 2A but now presented on a log–log plot. It
shows how the total molecular current crosses over from a diffu-
sion-dominated linear behavior for R � Ra to advection-dominated
quadratic scaling for R � Ra. This scaling is the same power as that
for the metabolic needs. We therefore conclude that transport by
the collective beating of flagella eliminates the diffusion-only
inhibition of growth and thus facilitates the transition to enlarge-
ment and multicellularity.

Discussion

Viewed from a different perspective, the flows we have described
enhance the molecular or metabolite exchange rate per unit area

of a colony. This advective contribution confers an advantage to
increasing size, because it rises precipitously from the smallest
organisms up to those whose size is several times the advection
radius (Fig. 5). These results suggest that ‘‘a greater rate of
nutrient acquisition per unit area’’ is one answer to the often-
posed question regarding the advantages of increased size (22),
particularly for colonial forms with only a few cells. Significantly,
the leveling out of the exchange rate for even larger colonies
implies size neutrality in that regime, i.e., that an increase of size
in this range no longer affords any greater rate of nutrient
acquisition per unit area. Perhaps this characteristic contributes
to the polyphyletic origin of the Volvocales.

It should be emphasized that the details of the boundary
conditions for nutrient uptake and�or waste removal can have a
large effect on the degree to which advection can enhance these
processes. It is also quite possible that the dynamics of waste
removal are coupled to those of nutrient uptake.

Fig. 4. Results from numerical calculations of spatial dependence of the concentration field using the theoretically obtained velocity field. (A) Concentration,

normalized by C�, near a perfectly absorbing [C(R) � 0] swimming spherical colony for various Péclet numbers, illustrating the development of a thin localized

anterior boundary layer and long narrow posterior plumes at high swimming speeds. Colors represent the dimensionless concentration C�C�. The concentration

fields near an immobilized colony are quantitatively very similar. (B) The relationship between boundary layer thickness and Péclet number. The thickness was

determined from the computations as the distance from the front surface of the sphere to the point at which C�C� � 0.1. When displayed as shown on a log–log

plot (black line), the boundary layer thickness, divided by sphere radius R, is parallel to a line (dashed) proportional to Pe�1/2, indicating that it also varies as the

�1�2 power at Péclet numbers greatly exceeding unity.

Fig. 5. Difference between molecular flux (current�area) with advection and

without, plotted as a function of the colony radius R, in units of the advective

radius Ra. Numerical results derived using flagella-driven flow show that

beyond Ra the advective contribution overpowers pure diffusion. Beyond


100 �m � 10Ra, the approximate size where germ�soma differentiation

occurs in the Volvocales, that difference saturates, indicating onset of size

neutrality, in the sense that increasing size no longer increases the advective

advantage in nutrient acquisition per unit area.
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Although we have focused on the central issue of metabolite
exchange in the presence of strong fluid transport by flagella, the
solute plumes (Fig. 4A), representing either depletion or waste, also
provide spatially and temporally extended signals for the presence
of a colony, perhaps significant for intercolony communication, as
in sexual induction (23) and quorum sensing (24), and for spatial
patterning by means of chemotaxis. In the context of predation, a
solute plume increases the probability of detection.

Methods

Colonies of V. carteri f. nagariensis harvested from synchronized
populations grown in standard Volvox medium (25) under con-
trolled dark�light cycles (16 h light, 10,760 lux, 28°C�8 h dark,
26°C) were held fixed by micropipette aspiration (Fig. 2), viewed
at 4� magnification on the stage of an inverted microscope
(Nikon Diaphot 200). Movies were acquired with an analog
charge-coupled device camera (SSC-M374; Sony; 480 � 640
pixels) and were typically composed of 
1,000 images taken at

30 frames per s. The resulting flow fields were smoothed by

averaging �200 frames. For particle imaging velocimetry (PIV)
studies, the medium was seeded with microspheres (Molecular
Probes; F8825 carboxylate modified, 1.0 �m, Nile red), viewed
by using laser epif luorescence (80 mW, 532 nm) or darkfield
illumination. Commercial PIV software (Dantec Dynamics,
Skovlunde, Denmark) was used. Averaged velocity fields were
used to obtain the tangential velocity component as a function
of polar angle � (Fig. 2), with typically 20 measurements between
� � 0 and � � �. Apart from minor distortions due to the
micropipette, symmetry between the two halves of the profile
was observed; we combined those data and partitioned them into
10 bins.

We thank H. C. Berg, T. E. Huxman, R. E. Michod, R. Stocker, and
especially A. M. Nedelcu for important discussions and L. Cisneros, C.
Dombrowski, and C. Smillie for experimental assistance. This work was
supported in part by National Science Foundation Grants DEB-0075296
(to C.A.S.), PHY-0551742 (to M.B.S., S.G., J.O.K., and R.E.G.), and
CMS-0093658 (to T.R.P.).

1. Niklas, K. J. (1994) Plant Allometry (Univ. of Chicago Press, Chicago).
2. Kirk, D. L. (1998) Volvox: Molecular-Genetic Origins of Multicellularity and

Cellular Differentiation (Cambridge Univ. Press, Cambridge, U.K.).
3. Solari, C. A., Kessler, J. O. & Michod, R. E. (2006) Am. Nat. 167, 537–554.
4. Solari, C. A., Ganguly, S., Michod, R. E., Kessler, J. O. & Goldstein, R. E.

(2006) Proc. Natl. Acad. Sci. USA 103, 1353–1358.
5. Koufopanou, V. (1994) Am. Nat. 143, 907–931.
6. Larson, A., Kirk, M. M. & Kirk, D. L. (1992) Mol. Biol. Evol. 9, 85–105.
7. Coleman, A. W. (1999) Proc. Natl. Acad. Sci. USA 96, 13892–13897.
8. Nozaki, H., Ohta, N., Takano, H. & Watanabe, M. M. (1999) J. Phycol. 35,

104–112.
9. Nozaki, H. (2003) Biologı́a 58, 425–431.

10. Bell, B. (1985) in The Origin and Evolution of Sex, eds. Halvorson, H. O. &
Monroy, A. (Liss, New York), pp. 221–256.

11. Koufopanou, V. & Bell, G. (1993) Proc. R. Soc. London Ser. B 254, 107–113.
12. Berg, H. C. & Purcell, E. M. (1977) Biophys. J. 20, 193–219.

13. Senft, W. H., Hunchberger, R. A. & Roberts, K. E. (1981) J. Phycol. 17,

323–329.
14. King, N. (2004) Dev. Cell 7, 313–325.
15. Guyon, E., Hulin, J. P., Petit, L. & Mitescu, C. D. (2001) Physical Hydrody-

namics (Oxford Univ. Press, Oxford).
16. Acrivos, A. & Taylor, T. D. (1962) Phys. Fluids 5, 387–394.
17. Magar, V., Goto, T. & Pedley, T. J. (2003) Q. J. Mech. Appl. Math. 56, 65–91.
18. Magar, V. & Pedley, T. J. (2005) J. Fluid Mech. 539, 93–112.
19. Hand, W. G. & Haupt, W. (1971) J. Protozool. 18, 361–364.
20. Hiatt, J. D. F. & Hand, W. G. (1972) J. Protozool. 19, 488–489.
21. Kiørboe, T. & Jackson, G. A. (2001) Limnol. Oceanogr. 46, 1309–1318.
22. Bonner, J. T. (1998) Integr. Biol. 1, 27–36.
23. Nedelcu, A. M., Marcu, O. & Michod, R. E. (2004) Proc. R. Soc. London Ser.

B 271, 1591–1596.
24. Bassler, B. L. (2002) Cell 109, 421–424.
25. Kirk, D. L. & Kirk, M. M. (1983) Dev. Biol. 96, 493–506.

Short et al. PNAS � May 30, 2006 � vol. 103 � no. 22 � 8319

E
V

O
LU

T
IO

N
A

P
P

LI
E
D

P
H

Y
S

IC
A

L

S
C

IE
N

C
E
S

 


