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We examine the game theoretic properties of a model of crime first introduced by Short et al.

(2010 Phys. Rev. E 82, 066114) as the SBD Adversarial Game. We identify the rationalizable

strategies and one-shot equilibria under multiple equilibrium refinements. We further show

that SBD’s main result about the effectiveness of defecting-punishers (“Informants”) in driving

the system to evolve to the cooperative equilibrium under an imitation dynamic generalizes

to a best response dynamic, though only under certain parameter regimes. The nature of this

strategy’s role, however, differs significantly between the two dynamics: in the SBD imitation

dynamic, Informants are sufficient but not necessary to achieve the cooperative equilibrium,

while under the best response dynamic, Informants are necessary but not sufficient for

convergence to cooperation. Since a policy of simply converting citizens to Informants will

not guarantee success under best response dynamics, we identify alternative strategies that

may help the system reach cooperation in this case, e.g., the use of moderate but not too

severe punishments on criminals.

Key words: adversarial game theory, mathematical criminology, social modeling, best response

dynamics, cooperative behavior

1 Introduction

While various mechanisms can sustain cooperative behaviour in social dilemmas, numer-

ous theoretical models, case studies, and experimental data have shown the punishment of

defectors to be particularly effective (e.g., Ostrom 1990; Ledyard 1995; Fehr and Gächter

2000; Henrich and Boyd 2001; Cinyabuguma et al. 2005; Boyd et al. 2010; Fudenberg
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and Pathak 2010; Takahashi 2010; Chaudhuri 2011; Xiao and Hauser 2011). Given that

the punishment of defectors is itself a second-order social dilemma, recent attention has

been given to how cooperative and punishing behaviour coevolve in evolutionary set-

tings (e.g., Fehr and Fischbacher 2004; Carpenter 2007; Hauert et al. 2007; Levine and

Pesendorfer 2007; Bowles and Gintis 2011). Most of these works examine the emergence

of cooperative and punishing behaviours in the standard social dilemma games, such as

the Prisoner’s Dilemma, Public Good Games, and Common Property Resource Games.

The lack of cooperation in these settings is driven by the tension between personal and

collective interests: players maximize their personal interest which, in turn, has an indirect

and negative effect on the collective interest.

Standard social dilemmas pervade much of social and political life, but individuals in

many societies—especially those with weak governments or state capacity—face dilemmas

that are more adversarial in nature than standard social dilemmas. Such settings have

been largely ignored in the literature, yet an important exception is Short et al. (2010),

hereafter SBD. In their work, the authors introduce an evolutionary game in which two

actors are selected at random, one placed in a potential criminal role, the other placed in

a potential victim role. The former decides whether or not to steal from the latter, and the

latter decides whether or not to report this theft to authorities, if it takes place. Whether

a report leads to conviction, which directly affects the expected net benefit of reporting a

crime, is probabilistically increasing in the population’s overall proclivity to cooperate with

authorities (i.e., proclivity to punish criminals). SBD modify the traditional cooperate and

defect strategies to account for punishing behaviour, and then show that under a specific

imitation dynamic, the presence of a novel strategy type—dubbed the Informant—that

both commits crimes and cooperates with authorities, is highly influential in driving the

system away from the “Dystopian”state of high crime and toward the efficient, no-crime,

“Utopian” steady state. Specifically, the presence of Informants is a sufficient, but not

necessary, condition for achieving the Utopian state.

Further experimental studies of this model have been performed (D’Orsogna et al.

2013), and the results of these experiments do indicate that the Informant strategy is in

fact critical in achieving a low-crime steady state. However, differing from the SBD results,

the experiments seem to show that Informants are necessary (and possibly sufficient) for

the low-crime state to flourish; those experiments with Informant as an available strategy

always tend toward a Utopian state, while those without Informants available always tend

toward a Dystopian state. Though these experiments structure the game in essentially the

same way as in the SBD model, subjects are free to choose strategies at will from amongst

those that are available. Hence, the update rules used in SBD may not accurately capture

all of the aspects of the decision making process that subjects use during the experiments.

To perhaps better understand the experimental results referenced above, this paper

more closely examines the game theoretic properties of the SBD Adversarial Game. We

consider the Adversarial Game worthy of study for multiple reasons. It provides an

original depiction of an adversarial setting but also presents a simple formalization of

the punishment of defectors (criminals) that explicitly captures the positive externality in

punishment present in many societies: civilians play a crucial role in the self-regulation

of pro-social norms (e.g., Sampson and Groves 1989; Skogan 1990; Bursik and Grasmick

1993), but fear of retaliation may lead to disengagement from law enforcement and
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the proliferation of criminal behaviour (e.g., Gambetta 1988; Beittel 2009). Furthermore,

the SBD model uses a simple, stylized schema of strategy types, including the novel

Informant type, that is of independent interest. Finally, though the game’s design is directly

influenced by features of crime and punishment in disorganized societies, the model’s

simple structure has the potential to illuminate our understanding of the emergence of

cooperative behaviour in a more general way.

In this paper, we recast the SBD Adversarial Game in a classic game theoretic setting.

A specific goal is to assess the robustness of SBD’s main finding regarding the influential

role of Informants in the evolution of cooperation. From a broader perspective, we

would like to identify what the Adversarial Game can teach us about the evolution of

cooperation. As part of that goal, we seek to identify exactly how the SBD game compares

with other, more commonly studied social dilemma games. We thus present both static

and evolutionary analyses. We first examine the one-shot Adversarial Game and fully

characterize the set of rationalizable strategies and (Bayesian) Nash Equilibria. As a

bridge between the static and evolutionary analyses, we then identify which equilibria

survive two equilibrium refinements: Evolutionary Stable Strategy and Trembling Hand

Perfect Equilibrium (THPE). We finally turn to evolutionary analysis. Whereas SBD

assume a particular imitation dynamic, we examine the evolutionary path of cooperative

behaviour under a simple best response dynamic.

Two main findings and two main lessons emerge from the analysis. Unlike other one-

shot social dilemma games in which the unique equilibrium is inefficient, the one-shot

Adversarial Game has multiple equilibria, one of which is efficient—Utopia. In effect,

the specific form of the positive externality in reporting (i.e., punishing) converts the

second-order public goods problem into a second-order coordination game, which in

turn converts the overall game into a non-standard coordination game. A key lesson is

that an institution that converts the second-order public goods problem from a social

dilemma into a coordination game can foster crime-deterring punishment. We also show

that SBD’s main result regarding the power of Informants to foster a low-crime society

generalizes to the case of best response dynamics, though in a much different way than in

the imitation dynamics of SBD. That is, we find the availability of the Informant strategy

to be a necessary, but insufficient, condition to maintain a low-crime state, which will

only occur given appropriate parameters and initial conditions. This finding suggests a

modification to SBD’s policy recommendation of converting defectors into Informants

to improve overall cooperation, under best response dynamics. Our analysis identifies

settings under which this policy is more likely or less likely to work. This finding is also

in better agreement with experimental results than the original SBD model.

We emphasize that this Adversarial Game does not manifest the second-order free-rider

problem in which the collective level of punishment on defectors is itself a type of public

good problem, as in Fehr and Gächter (2000). Rather, the second-order punishment game

is a coordination game in which the expected net benefits of punishing are increasing in

the overall proportion of others that also punish. Thus, this Adversarial Game is closer

in spirit to social dilemma models, such as Ostrom et al. (1992) and Boyd et al. (2010),

in which punishers must solve a coordination problem. Our findings thus complement

prior theoretical work by showing how coordinated punishments can enforce cooperative

behaviour in a directly adversarial setting.



320 M. McBride et al.

Our work also complements prior work in the economics literature on crime. In his

review of literature, Ehrlich (1996) distinguishes two main strands of recent work: market

models of crime and optimal crime control policies. Our paper resides in the former,

though we do offer suggestions regarding the latter. Prior models have considered the

equilibrium patterns of crime in static settings (e.g., Fender 1999), while others have

considered the instability of equilibria (e.g., Eaton and Wen 2008). Our paper differs by

considering an stylized, evolutionary setting, and looking at the evolution and steady states

of crime and reporting. In this way, we draw more direct comparisons to the evolution of

cooperation literature.

2 The Adversarial Game

Consider a population of expected-payoff maximizing actors, each labelled by an index

i = 1, ..., N, and N, the total population size, is large and even. Each actor has an

endowment of 1 and must next choose one of the four following strategies:

P = “Paladin” = {not steal, report},
A = “Apathetic” = {not steal, not report},
I = “Informant” = {steal, report},
V = “Villain” = {steal, not report}.

Let the number of players in total who choose a particular strategy ℓ ∈ {P , A, I, V } be

denoted as Nℓ. After choosing their strategies, two of the actors, say i and j, are chosen at

random (uniformly) and paired for an interaction. All other actors are bystanders. Each

bystander receives payoff 1 no matter what others do, yet as bystanders their strategies

may affect the payoffs for i and j.

The two selected actors, i and j, are randomly assigned (uniformly) into different roles:

one is assigned the first-mover role of “potential criminal,”and the other is assigned

the second-mover role of “potential victim.” Here, the terms “first-mover” and “second-

mover” differ from the sense that they are often used in, for example, Stackelberg games.

In Stackelberg games, the “first-mover” must commit to her strategy before the “second-

mover” must commit to his; this allows the second-mover to optimize against a known

(but probably mixed) strategy. In our case, the first- and second-movers must both choose

their strategies simultaneously, before any interaction occurs. We use the term “first-

mover” merely to signify that this player’s strategy choice determines what happens in the

first phase of the game, while the term “second-mover” signifies that this player’s strategy

choice determines what happens in the second phase of the game; see below for details.

After this pairing, the selected players’ strategies are carried out in the following way.

If the first mover does not steal, then each keeps his or her initial endowment of 1

regardless of the second mover’s report strategy. If the first mover steals, then δ is taken

from the second mover, and αδ (with 0 < α < 1) is given to the first mover. Hence, an

amount (1 − α)δ is destroyed (forgone productive activity by the first mover, etc.) in this

process, making theft socially inefficient. When the first mover steals, then the second

mover’s report-decision plays a role in determining the outcome. If no reporting occurs,

final payoffs are (1 + αδ, 1 − δ). If reporting occurs, the probability of a conviction is
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given by r ≡ (NP + NI )/N. Notice that r, which we shall refer to as the “report rate”, is

the proportion of actors that chose report as part of their strategy. If conviction occurs,

then the first mover returns δ to the victim and pays an additional punishment cost θ,

ending with a payoff of 1 + αδ − δ − θ. In this case, the victim is fully reimbursed to

receive payoff 1. If no conviction occurs, the criminal keeps 1 + αδ, and the victim pays

an additional cost ε (due to a loss in reputation or to retaliation) for a final payoff of

1 − δ − ε. Finally, we define s ≡ (NI + NV )/N, the proportion of actors that chose steal

as part of their strategy, as the “steal rate”.

The Paladin, Apathetic, Informant, and Villain labels, which are taken directly from

SBD, are meant to convey the essence of the strategies. Paladins act as pure cooperators

by not stealing and reporting criminals; Apathetics disengage from society by neither

stealing nor reporting (first-order cooperator, second-order defector); Informants commit

crimes but also punish criminals (first-order defector, second-order cooperator), a strategy

that plays a strong role in SBD’s original analysis; and Villains act as pure defectors

by both committing and not reporting crimes. We emphasize that these labels do not

necessarily match how those terms are used in everyday discourse (if indeed they are used

every day). Rather, they are meant to convey the essence of the four possible strategies

in this Adversarial Game. We also note that strategies are chosen at the start of a period

and not at information sets within the period. Given the sequential nature of the game, it

is natural to consider choices by information set, yet the single choice at the start of the

round allows us to consider off-path choices and matches SBD’s original analysis.

SBD’s original Adversarial Game differs from our version in a few ways, two of which

are worthy of note and relate to SBD’s primary motivation to examine evolutionary

dynamics of cooperative behaviour in adversarial settings. The first difference is that our

formulation above is of a one-shot game, whereas their set-up is an evolutionary model

with repeated periods. Our one-shot game mimics their stage game in that in each period

two actors are selected at random and matched, and all other actors are bystanders for that

period. The one-shot game is of sufficient interest and, as we shall see, serves as a useful

benchmark for our later evolutionary analysis. The second difference is that strategies in

SBD’s version are either inherited or adopted via a pseudo-imitation dynamic (described

in detail in Section 4 of this paper) rather than being selected by payoff maximization

(best responding). Strategy revision via imitation is commonly assumed in evolutionary

settings where the primary interest is the evolution of behaviour over time (see Sandholm

2010). We consider a best response dynamic instead of an imitation dynamic because it is

a dynamic more closely tied to standard (non-evolutionary) game theoretic analysis and

because, as will be shown, it will generate different evolutionary paths of behaviour.

The Adversarial Game defined above is a simultaneous game of imperfect information,

but it could alternatively be defined as a sequential move game in which the potential

criminal makes the steal decision knowing his or her role, and the victim and bystanders

make their report decisions after observing a crime. The potential criminal would choose

from the strategy set {steal, not steal}, and the others would choose from the set {report,

not report}, thus decoupling the steal and report decisions from the overall strategy plan

as defined with the simultaneous structure. This sequential structure may more accurately

reflect the timing of real-life steal and report decisions; however, we use the simultaneous

structure for three reasons. First, having all actors make strategy decisions before knowing



322 M. McBride et al.

their roles makes decisions salient for all actors rather than just those in the matched

pair. If bystanders make their report decisions knowing that they are bystanders, then

their actions have no relevance to their payoffs. Second, the simultaneous structure better

reflects the notion of societal conditions that partly motivates the model. Actors live in

a societal setting that has certain properties that pre-date and influence the effectiveness

of criminal acts. The committed behaviour of all actors, including bystanders, reflects

their latent support, or lack thereof, for punishing criminals that is realized upon the

commission of a crime. Third, SBD assume strategy-types are determined at the end of

the prior period rather than sequentially within each period. In choosing two-dimensional

strategies at the start of the period, we can, when moving to the dynamics, track the full

evolution of strategy types, which is a fundamental feature of SBD’s original analysis.

Unlike other social dilemma games, the one-shot Adversarial Game has a single po-

tential deviant. This feature better reflects the inherent asymmetry of criminal behaviour,

where at a given point in time only one actor may be in a position to take advantage of

others or be victimized. The Adversarial Game also formalizes a stylized form of pun-

ishment for deviators directly into the basic game by allowing the victim to immediately

challenge deviant behaviour. Moreover, as with some types of actual criminal behaviour,

the victim has more to gain than the bystanders when the criminal is punished because

he or she is reimbursed. The victim also has even more to lose because an unsuccessful

challenge results in an additional private cost. However, the expected result of attempting

to punish a deviant depends on the larger societal characteristics, i.e., the behaviour of the

bystanders. Bystanders, though not directly affected by the realized crime, do indirectly

foster or inhibit deviant behaviour by influencing the likelihood of successful punishment.

Thus, in a very simple way, the Adversary Game captures the positive externalities inher-

ent in the punishment of deviants. The more supportive the environment, the larger the

expected benefit of attempting to punish, and the smaller the expected cost. We discuss the

importance of this feature of the model in more detail after our analysis of the one-shot

game.

3 Static analysis

3.1 Best-response functions

An actor’s report decision is only relevant if he or she is a victimized second mover, which

occurs with probability ≈ s/N (approximate because, if the second mover in this case has

strategy V or I , the first mover is a victimizer with probability s − 1/N, rather than s);

with probability ≈ (1− s)/N, this report decision is irrelevant. Conditional on the decision

being relevant, the expected payoff for reporting is higher than when not reporting if

r (1) + (1 − r) (1 − δ − ε) > 1 − δ ⇒
r >

ε

ε + δ
≡ R. (3.1)

Hence, the best report decision is to report when r > R, not report when r < R, and

either report or not report when r = R.

An actor’s steal decision is only relevant if he or she is the first mover, which occurs

with probability 1/N; otherwise, the steal decision is irrelevant. Conditional on the
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decision being relevant, the probability that the second mover will report the crime

is ≈ r (approximate because, if the first mover in this case has strategy I , the second

mover reports with probability r − 1/N, rather than r). Hence, the expected payoff for

stealing is higher than when not stealing if

r [r (1 + αδ − δ − θ) + (1 − r) (1 + αδ)] + (1 − r) (1 + αδ) > 1 ⇒

r <

√

αδ

δ + θ
≡ S. (3.2)

Hence, the best steal decision is to steal when r < S , not steal when r > S , and either

steal or not steal when r = S .

Altogether, the actor’s ex ante best response function, assuming S �R, is thus

BRi (s, r) =











































































{P , A} , if s = 0 and r > S,

{P , A, I, V } , if s = 0 and r = S,

{I, V } , if s = 0 and r < S,

P , if s > 0 and r > S and r > R,

A, if s > 0 and S < r < R,

I, if s > 0 and R < r < S,

V , if s > 0 and r < S and r < R,

{P , A} , if s > 0 and S < r = R,

{P , I} , if s > 0 and R < r = S,

{A,V } , if s > 0 and r = S < R,

{I, V } , if s > 0 and r = R < S.

(3.3)

This function is depicted graphically in Figure 1.

3.2 Rationalizable strategies

The game-theoretic notion of rationalizability identifies the set of strategies that will be

played when players have common knowledge that every player will play a best response

(Fudenberg and Tirole 1996). This set is identified via iterative logic. If one actor will

never play one strategy because it is never a best response, then the other players know

that fact and take it into account when identifying their own best responses. Moreover,

the first player knows that the other players take that fact into account when making her

own choice, and this fact is known by the other players, and so on.

One way to identify the set of rationalizable strategies is to construct an infinite chain

of justification, at each step of which one player justifies her own best response by a

conjecture of what the other players do, and then at the next step, the other players justify

those conjectured strategies by their own conjectures, and so on. If such a chain can be

constructed in which each player’s conjectured strategy is a best response to a conjecture

that is also a best response, then the strategies are rationalizable.

Proposition 1 Fix δ, α, ε, and θ. Then, every pure strategy is rationalizable.

Proof Consider strategy P . P is a best response to a conjecture that all others choose P ,

which is a best response for each actor to the conjecture that all others choose P , and so
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Figure 1. A graphical representation of the best response function BRi(s, r) of equation (3.3)
under the three cases: (a) s = 0, (b) s > 0, S > R, and (c) s > 0, R > S .

on. An infinite chain of justification can thus be created in which each actor believes all

others choose P at each step, thus making P rationalizable.

Next consider strategy A. A is a best response to a conjecture that all others choose P ,

which we know is rationalizable from above. An infinite chain of justification can thus be

created for A.

Now consider strategy V . V is a best response to a conjecture that all others choose V ,

which is a best response for each actor to the conjecture that all others choose V , and so

on. An infinite chain of justification can thus be created in which each actor believes all

others choose V at each step, thus making V rationalizable.

Finally, consider strategy I . I is a best response if all others choose A, which we

know is rationalizable from above. An infinite chain of justification can thus be created

for I . �

As evident by this result, common knowledge of rationality does not alone restrict the

set of potentially observable behaviours.

3.3 Perfect Bayesian equilibrium

The standard solution concept for (Bayesian) games in which the actors act simultaneously

not knowing the move by Nature is the Bayesian Nash Equilibrium (BNE) concept. Our

second result identifies the BNE of the Adversarial Game.
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Proposition 2 Fix δ, α, ε, and θ.

(a) The set of pure BNE consists of the following:

(i) symmetric profile “Utopia”, in which each actor chooses P ;

(ii) symmetric profile “Dystopia”, in which each actor chooses V ;

(iii) any asymmetric “Semi-Utopia” profile, in which a fraction z of actors choose P , the

remaining fraction (1 − z) of actors choose A, and S � z < 1;

(iv) and the asymmetric “Semi-Dystopia” profile, in which the fraction R of actors choose

I and the remaining fraction (1 − R) of actors choose V .

(b) The sum of expected utilities is maximized in Utopia and Semi-Utopia.

Proof (a) 1. We first show that the profiles listed are equilibria.

(a-i) Utopia with every actor choosing P implies (s = 0, r = 1). From the best response

function, we see that P is a best response to (s = 0, r = 1) for each actor. Hence, Utopia

is a pure, symmetric BNE.

(a-ii) Dystopia with every actor choosing V implies (s = 1, r = 0). From the best

response function, we see that V is a best response to (s = 1, r = 0) for each actor. Hence,

Dystopia is a pure, symmetric BNE.

(a-iii) Consider Semi-Utopia with S � z < 1. It follows that (s = 0, r = z � S). From

the best response function, we see that both P and A are best responses. With each actor

choosing a best response, it follows that Semi-Utopia is an asymmetric, pure BNE.

(a-iv) Consider Semi-Dystopia with the fraction R of players choose I and the fraction

(1 −R) of players choose V , so that (s = 1, r = R). From the best response function, each

Informant and Villain is playing a pure best response. Hence, this Semi-Dystopia is an

asymmetric, pure BNE.

2. It is straightforward to show that for every other (s, r) combination, at least one

actor is strictly better off in expectation by changing strategy. The cases left to consider

are as follows:

(i) (s = 0, r < S), where non-criminals are strictly better off in expectation by stealing;

(ii) (s > 0, r > S), where criminals are strictly better off in expectation by not stealing;

(iii) (s > 0, R < r � S), where non-reporters are strictly better off in expectation by

reporting;

(iv) (s > 0, 0 < r < R), where reporters are strictly better off in expectation not reporting;

(v) (0 < s < 1, r = 0 or r = R < S), where non-criminals are strictly better off in

expectation by stealing.

(b) Social utility is lost anytime a crime occurs, and crime occurs in expectation if and

only if at least one actor selects a V or I strategy. Hence, Utopia and Semi-Utopia have

maximized sum of utilities. �

The Utopia and Dystopia labels are taken from SBD, though the social configurations

they apply these labels to are slightly different. SBD use Utopia to refer to any state in
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which no crime occurs, thus combining our definition of Utopia as well as our definition

of Semi-Utopia under one label. They refer to both Utopia and Semi-Utopia as Utopia

because the distinction was not important given their dynamic analysis. However, our

analysis below finds the distinction to be important. SBD use Dystopia to refer to the state

in which no punishing occurs, as we do here. However, the SBD Dystopian state includes

both Villains and Apathetics, while ours includes only Villains. There is no analogue of

our Semi-Dystopia in the SBD dynamics.

Two technical matters regarding Proposition 2(b) are of note. First, the sum of utilities

is maximized in any setting with no crime on the equilibrium path, so it is possible that

the sum ofrealized utilities can be maximized with some actors choosing I or V . This

occurs when none of those crime committing actors is selected to be the first mover.

However, whenever I or V are chosen by at least one actor and before roles are realized,

there is a non-zero probability that an inefficient outcome will occur. Second, if a fraction

z of actors choose P and the remaining fraction (1 − z) choose A, then the sum of utilities

will be maximized with any z, 0 � z � 1. In effect, there are efficient, non-equilibrium

Semi-Utopia strategy profiles when 0 � z < R.

3.4 Equilibrium refinements

As seen above, the Adversarial Game has multiple equilibria. Without any further as-

sumptions about how strategies are selected, it is not clear which, if any, of the equilibria

would be chosen. One way to approach this equilibrium selection problem is to perform an

evolutionary analysis. However, before turning to such analysis, we consider equilibrium

refinements in the one-shot game, which can identify which equilibria are most likely to

be played and thereby identify which equilibria we expect may arise in our evolutionary

analysis.

Although we find many asymmetric Semi-Utopia to be equilibria in the one-shot game,

we do not find many asymmetric Semi-Dystopia equilibria. The reason for this result is

that the symmetric Utopia with all Paladins is a weak BNE while the symmetric Dystopia

with all Villains is a strict BNE. To see this, observe that if all players other than player

i are Paladins, then i is indifferent between being a Paladin and an Apathetic, while if

all others are Villains, then i’s unique best response is to be a Villain. This fact has

implications for refining the set of equilibria.

We consider here two refinements. The first is the notion of an Evolutionarily Stable

Strategy (ESS), which is a strategy that, if adopted by all actors, cannot be invaded by a

mutant (Sandholm 2010). Recognizing that the BNE of the Adversarial Game is effectively

a Nash Equilibrium, we here consider as an ESS in this Bayesian Game a strategy whose

expected utilities satisfy the utility conditions for ESS. The second refinement is THPE

in which no actor wants to change his or her strategy given the small chance that others

will deviate from their intended strategies (Fudenberg and Levine 1996). As with ESS, we

apply the THPE concept using expected payoffs rather than realized payoffs.

Proposition 3 Fix δ, α, ε, and θ.

(a) V is the only pure ESS.
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(b) Dystopia and Utopia are the only pure THPE.

Proof

(a) Let Ui(x, y) be the expected payoff to actor i when he or she chooses x and all

other N − 1 actors choose y. By definition, a pure ESS is a symmetric pure equilibria

in which all actors choose strategy x such that (i) Ui(x, x) � Ui(y, x) and (ii) if

Ui(x, x) = Ui(y, x), then Ui(x, y) > Ui(y, y), for any strategy y� x. From Proposition

2(a), the only two symmetric equilibria that may potentially be ESS are all choose V

(Dystopia) and all choose P (Utopia).

Consider Utopia. From the best response function, it is evident that Ui(P , P ) =

Ui(A, P ) but Ui(P , A) = Ui(A,A). Hence, P is not an ESS. Now consider Dystopia.

From the best response function, it is clear that Ui(V , V ) > Ui(y, V ) for y =∈ {P , A, I}.
Hence, V (Dystopia) is an ESS.

(b) A THPE is a Nash Equilibrium with certain properties, one of those being that no

weakly dominated pure strategy can be played in a THPE (see Fudenberg and Tirole

1996). From Proposition 2(a), the only equilibria to consider are Dystopia, Utopia,

and Semi-Utopia. From the best response function: V is the unique best response

when all others choose V , so Dystopia is a THPE; P is the unique best response

when s is close to 0 and r is close to 1, so Utopia is a THPE; but A is weakly

dominated by P in Semi-Utopia, so Semi-Utopia is not a THPE.
�

That Dystopia withstands typical revisions follows from it being a strict equilibrium.

Conversely, all-Paladin Utopia cannot withstand invasions by Apathetics, but it can

withstand small mutations or errors in which crime occurs.

3.5 Other social dilemma games and the reporting externality

It is readily apparent from Propositions 1 and 2 that one fundamental difference between

the Adversarial Game and standard social dilemma games (Prisoners Dilemma, Public

Good, Common Property Resource) is that whereas a social dilemma game typically has a

single equilibrium that is inefficient, the Adversarial Game has multiple equilibria, one of

which is efficient. Indeed, upon closer inspection, though the Adversarial Game is a social

dilemma game in spirit and purpose, it is actually an N-actor, four-strategy coordination

game with efficient Utopia and inefficient Dystopia as the two focal equilibria. The

Adversarial Game is transformed from a social dilemma into a non-standard coordination

game via the reporting externality which makes punishment (reporting) a best response

when enough others also punish (we refer to it as a non-standard coordination game

because coordination is successful on only two of the four strategies). The second-order

punishment problem is not a typical social dilemma but rather a coordination game that

has enough force to transform the first-order social dilemma, indeed, the entire game, into

a coordination game.

It is instructive to revisit SBD’s interpretation of the model with this new insight in

mind. SBD explain that the reporting reflects a willingness to cooperate with authorities.



328 M. McBride et al.

Player 2
C D

Player 1
C 2,2,0 0,3,0
D 3,0,0 1,1,0*

(A) Reporting rate r = 0 (Player 3)

Player 2
C D

Player 1
C 2,2,0* 0,2,0
D 0,2,0 0,0,0

(B) Reporting rate r = 1 (Player 3)

Figure 2. Modified prisoner’s dilemma game.

That is, the setting is one in which there already exists in place a third-party institutional

framework that can leverage society members’ willingness to cooperate into effective

punishment of criminal behaviour. The larger lesson is that if such institutions can be

developed, then cooperation can be sustained even in short horizon interactions. This begs

the question of how such institutions can be developed in the first place; however, it is

evident that such institutions fundamentally change the incentives of potential criminals

when there is sufficient societal support.

In principle, any social dilemma game can be converted from a social dilemma to

a modified coordination game through a similar mechanism. Consider the following

example. Suppose the Adversarial Game payoffs were replaced with a simultaneous move

Prisoners Dilemma Game payoffs and then appropriately modified. Also suppose that

whether defectors are reported and punished depends only on the choice of a single

bystander, actor 3, whose actions represent society’s support or lack thereof for punishing

defectors. The bystander can choose the reporting rate to be either r = 0 or r = 1, and

his or her payoff does not depend on this choice. The left matrix in Figure 2 depicts

the typical Prisoners Dilemma payoffs when the bystander does not report or punish

defectors. The payoffs in the right matrix correspond to when there is full reporting and

punishment. The payoffs are calculated by subtracting 3 from each defector and adding

2 to each victim; the defector pays back the 2 lost by the defection, which goes to the

victim, and then pays an additional 1 as punishment.

In this modified Prisoners Dilemma Game, as with the Adversarial Game, we have

defection as the unique best response when there is no reporting, and we have cooperation

as the unique best response with full reporting. The two equilibria of Dystopia and

Utopia (denoted by * in the matrices) are the only two pure Nash Equilibria in the game.

More generally, if actors coordinate their reporting, then the incentives to defect will be

overcome by the threat of punishment. These two equilibria reveal it to be a game of

coordination.

4 Evolutionary analysis with best response dynamics

SBD’s main purpose is to examine the evolution of behaviour with long-run repetition of

the Adversarial Game. They assume that strategies switch according to a special imitation

dynamic. Say that an actor is a “loser” in a period if that actor’s payoff is strictly less

than the initial endowment. Clearly, a first mover will only be a loser if he or she was

an Informant or Villain that was convicted after being reported against, while a second

mover is a loser if he or she is a victimized Apathetic or Villain or a victimized Paladin

or Informant that unsuccessfully challenged after being victimized. The “winner” is the

other player in that period. SBD assume that only losers switch strategies and that they
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do so by (possibly imperfectly) mimicking one of the players in that round. The choice of

which player to mimic is made with a probability proportional to the players’ payoffs for

that round. This probability implies a certain amount of inertia in the system. However,

a caveat is that any loser who chooses to mimic the second player always becomes a

non-criminal type, directly mimicking the second player’s reporting strategy only. The

idea behind this is that the loser in this case has decided not to mimic the criminal (which

would certainly cause him or her to become a criminal type), and has therefore implicitly

decided not to commit criminal acts. In short, the SBD dynamic is best described as a

modified imitation dynamic with inertia.

SBD show that, with a deterministic version of their imitation dynamic, the Adversarial

Game always converges to either Utopia/Semi-Utopia or their form of Dystopia (consist-

ing of mostly Villains with some Apathetics, due to the imperfect mimicking), and that

whether the system converges to one or the other depends strongly on the presence of

Informants in the initial population. If there are no Informants in the initial population,

then the system converges to Dystopia unless a large fraction of the initial population are

Paladins; if there are any Informants, then the system converges to Utopia/Semi-Utopia.

With a stochastic imitation dynamic, the system converges to Utopia/Semi-Utopia with

quickly increasing probability as the initial number of Informants increases. In short,

increasing the second-order cooperation (punishment of defectors) among defectors them-

selves has a powerful effect on the system’s resting state, so much so that any number of

initial Informants is sufficient to eventually bring the system to Utopia.

It remains to be seen whether this striking result holds for other strategy revision

dynamics. We here consider the best response dynamic, which is an important alternative

to the imitation dynamic (Sandholm 2010). In an imitation dynamic, the actor adopts

the strategy of another actor, usually with the likelihood of adoption increasing in the

performance of the actor potentially copied. Inertia takes two forms: only one or a small

number of actors are allowed to switch strategies in a given round, and each of those

potential switchers will switch with probability less than 1. In a best response dynamic,

the actor that switches does so with more foresight: he or she switches to a strategy

that is a best response to the current strategies of the other actors. As with an imitation

dynamic, a best response dynamic usually incorporates inertia, with only one or a few

actors allowed to switch in a given period.

There are many forms that a best response dynamic can take. Three main charac-

teristics are the rate of inertia, how choice is made among competing best responses,

and whether decision errors are allowed during strategy switches. We consider a Best

Response Dynamic, denoted SBD-BRD, that selects on these three characteristics to

maintain a closeness in spirit to the SBD imitation dynamic. The intent is to find the

closest best response dynamic analogue to the SBD imitation dynamic, thus allowing for

the sharpest comparison of results when switching the dynamic. We then consider an

important variation on the dynamic to check robustness.

Definition 1 SBD-BRD is the following switching protocol:

(a) At the end of period t, with probability q > 0 one of the two selected actors is chosen

to switch strategy.
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(b) Conditional on being selected to switch, the actor switches to a best response to the

population strategy profile of period t, and if more than one best response exists then

one is selected at random (uniformly).

Note how SBD-BRD handles inertia, multiple best responses, and switching errors. It

intentionally mimics the degree of inertia in SBD’s imitation dynamic: there is a chance

no actor switches strategy; at most one actor switches strategy; and that actor is one of

the two matched actors. SBD’s assumption that the loser is the one to switch matches

the spirit of imitation dynamics because a loser would want to imitate a winner but not

vice versa. However, in the spirit of the best response dynamic, potentially any actor may

see benefits in switching, so we allow either of the two actors to be the one to switch.

SBD’s imitation dynamic does not have a natural analogue to the issue of multiple best

responses in the best response dynamic, so without guidance from the SBD dynamic we

here adopt a conventional assumption that the actor mixes equally among best responses.

SBD’s imitation dynamic also does not include switching errors, and SBD-BRD makes a

similar assumption.

Proposition 4 Fix δ, α, ε, and θ. Under SBD-BRD, there are two possible long-term beha-

viours:

(a) the system evolves to Dystopia, or

(b) the system maintains a level of reporting r � S > R.

Proof Here, we assume that |R − S | ≫ 1/N, and define the following regimes of (s, r)

space, which cover all possible values:

(i) s > 0, r < R,

(ii) s = 0, r � S ,

(iii) s = 0, r < S ,

(iv) s > 0, r � R.

(a) First, consider the case S < R, with initial conditions in regime (i). Here, the best

response is to not report, so that each strategy update will either leave r unchanged

or will decrease r. There is a non-zero probability that these sequences of updates will

also leave s > 0. Conditional on s remaining non-zero, then, the system is guaranteed

to eventually evolve to a point in which r < S , in which case V is the unique best

response, leading the system to eventually reach Dystopia and stay there forever. If s

becomes zero before this can happen, the system switches to regime (ii).

Now, consider the case S < R with initial conditions in regime (ii). If r > S , either

P or A is a best response, so each update will keep s = 0 and may increase, decrease,

or maintain r. With probability 1, then, the system will eventually evolve through

neutral drift to either a point in regime (iii) or to the specific point s = 0, r = S . If

r = S , all strategies are best responses, so eventually an update will occur that either

creates a criminal and puts the system back in regime (i), maintains s = 0 and causes
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r > S (still in regime (ii)), or puts the system into regime (iii). Hence, the eventual

end result of beginning in regime (ii) is to either enter regime (i) or regime (iii).

Let us consider, then, S < R with initial conditions in regime (iii). Here, the best

responses are V and I , so the next update will necessarily put the system into regime

(i) above.

Next, consider the case S < R, with initial conditions in regime (iv). If r = R, either

P or A is a best response, so there is a non-zero probability that r decreases below

R, leading to regime (i). Otherwise, the unique best response is P , causing r to either

increase or stay the same each round, and causing s to decrease or stay the same each

round. Eventually, then, the system will evolve to a state in which s = 0, r > R > S ,

which is regime (ii).

Hence, when S < R, initial conditions in regimes (ii)–(iv) will all eventually (though

possibly indirectly) lead to regime (i), which leads to the absorbing Dystopia state

with a non-zero probability, and otherwise leads back to regime (ii). Therefore, when

S < R the system will eventually evolve into, and forever remain in, the Dystopian

state, regardless of initial conditions.

Finally, consider the case R < S with initial conditions in regime (i).

The best response here is V , causing the system to evolve to Dystopia with

probability 1.

(b) Consider now R < S , with initial conditions in regime (iv). If r = R, both I and V

are best responses, so the system may evolve to regime (i) and, therefore, to Dystopia.

However, there is a non-zero chance that the system instead evolves such that r > R.

With r strictly greater than R, reporting is always the best response, so r will only

increase or maintain. Furthermore, if r < S , we are guaranteed to maintain s > 0, as

I is the unique best response. Therefore, the system will eventually evolve to a point

with s > 0, r � S . At this point, P is certainly a possible best response (usually the

unique best response), so the system will eventually evolve into regime (ii).

Initial conditions in regime (ii) behave the same way when R < S as when R > S ,

though this behaviour may lead to entering different subsequent regimes, due to the

switching of the order of R and S . That is, initial conditions (ii) will eventually lead

through neutral drift either to regime (iv), specifically with S − 1
N

� r, or regime (iii),

specifically with S − 1
N

� r < S .

Now we turn to R < S with initial conditions in regime (iii). Here, the best response

is I or V , so the next update will cause us to leave regime (iii) as s becomes non-zero.

But, there are three possibilities for how this will happen. First, if r � R + 1
N

, this

update will put us into regime (iv). This is guaranteed to happen if we entered regime

(iii) from regime (ii), as mentioned above, and will specifically lead to regime (iv) with

r � S − 2
N

. If r < R − 1
N

, this update will put us into regime (i), and lead to Dystopia.

If R − 1
N

� r < R + 1
N

, the system may evolve into either (iv) or (i).

We can therefore summarize these results in the following way. For R < S , if

the system is ever in a state in which r � S − 2
N

, r is guaranteed never to fall out

of that region again. In this case, the system will maintain an r in this range while

cycling between regimes (iv) and (ii) (potentially with very brief stops in (iii) between).
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Figure 3. Mean flow fields in (r, s) space for the cases R > S (left), S > R (centre), and S > R but
with no Informants (right), using N = 20. Colours represent the total amount of time spent at a
cell, ranging from light gray (little time) to bright orange (much time), assuming a uniform initial
distribution on the number of players of each strategy type. For R > S , all trajectories eventually
end in Dystopia. For S > R (centre), we have treated r = S as an absorbing point (all trajectories
passing through that point actually cycle near it indefinitely), so that all trajectories end either there
or at Dystopia. With Informants disallowed (right), however, all trajectories end in Dystopia.

Furthermore, once this cycling begins, there will never be more than 1 Villain in the

system at a time, and never more than SN + 1 Informants (the typical number will

be much less than this). Finally, the only initial conditions that are guaranteed to not

lead to this long term behaviour (and are guaranteed to enter Dystopia) are those

in regime (i) or those in the subset of regime (iii) with r < R − 1
N

; essentially those

initial conditions with r � R. All other initial conditions are either guaranteed to end

in this cycling (when r � R) or may lead to either this cycling or to Dystopia (when

r ≈ R).

�

The above argument is explored graphically in Figure 3. Here, we have plotted the

mean flow fields in (r, s) space for the two cases R > S and S > R, using N = 20.

These mean fields assume a uniform distribution on the initial number of players of each

strategy. The background colours range from light gray to bright orange, and represent

the total amount of time spent in each of the available cells, from very little to very much.

For the case R > S (left), we see that the trajectories are separated along the line r = R

when s > 0, but that the s = 0 line serves as a funnel from the region r > R to the

region r < R. When r < R, the trajectories inevitably lead to Dystopia, where they remain

forever (hence the brightest orange square on the figure). For the case S > R (centre),

we also see a separation around r = R, but the line s = 0 no longer funnels trajectories

from above this separation to below it. Here, we have treated r = S, s = 0 as an

absorbing point (hence the brightest orange on that plot), because any trajectory passing

through it will in fact never settle down to a single point, and will forever cycle near that

region.

Proposition 4 reveals that the SBD result about the influential role of Informants does

generalize in the case of SBD-BRD, as long as R < S , though the role that the Informants

play differs from SBD to best response. In SBD, Informants are a sufficient but not
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necessary condition to drive the system to Utopia/Semi-Utopia. In SBD-BRD, on the

other hand, Informants are a necessary but not sufficient condition to keep the system

near Utopia/Semi-Utopia. This result is formalized in the following proposition, which

considers a modified form of SBD-BRD.

Proposition 5 Fix δ, α, ε, and θ. Under SBD-BRD, but with the strategy I now disallowed,

the system will always evolve to Dystopia in the long term.

Proof With I disallowed, we must now reconsider our Best Response function BRi(s, r).

For all entries that list I as a non-unique best response, we may simply remove I . This

leaves only the special case R < r < S , for which I is the unique best response. Note,

therefore, that if S < R, removing I from our possible list of strategies does not change

the Best Response function in any qualitative way, so that the result above—that if S < R

the system will always evolve to Dystopia—still holds. Also, note that if I is disallowed,

the inequality s � 1 − r must hold, since in this case s = V/N and r = P/N, and

V = N − A − P .

If R < S , we must determine the new best response for R < r < S . Since r < S , V

is superior to A, and since R < r, P is superior to A. Hence, either V or P is the best

response, or both. The expected payoffs for P and V are

1 − s

2
(1 − r)(δ + ε) and 1 − s

2
δ +

1

2

[

αδ − r2(δ + θ)
]

,

respectively. These payoffs are equal when s = Q(r), with

Q(r) =
(δ + θ)(S2 − r2)

(δ + ε)(r − R)
.

Thus, if s > Q(r), P is the best response, if s < Q(r), V is the best response, and if s = Q(r),

both P and V are the best response.

The function Q(r) is defined on s ∈ (R, S], is decreasing and concave up with slope

guaranteed to satisfy Q′(r) � −2, and Q(S) = 0 while Q(s) diverges as r → R. Furthermore,

there is a critical value of r, call it r∗, where the curve s = Q(r) intersects the line s = 1 − r

(the maximum value s can attain for any given r), and R < r∗ < S . Therefore, V is always

the unique best response if r < r∗ since in this case s cannot possibly be greater than Q(r).

We now introduce two new regimes for initial conditions, based upon Q(s):

(v) s > 0, r � Q(s),

(vi) s > 0, r < Q(s).

Now, consider R < S with initial conditions in regime (v). If r = Q(s), the next update

may either remain in regime (v) with r > Q(s), put the system into regime (vi), or put the

system into regime (ii). For r > Q(s), P is the unique best response, so the system will

eventually evolve to a state in regime (ii).

Consider R < S with initial conditions in regime (ii). Here, through neutral drift the

system will eventually evolve into one of three other regimes: regime (v), specifically with

s = 1
N
, r = S; regime (iii), specifically with S − 1

N
� r < S; or regime (vi), specifically
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with s = 1
N
, r = S − 1

N
. To see this last possibility, it is important to remember that

Q′(r) � −2 and Q(S) = 0, so that the point specified certainly resides within regime (vi)

and not regime (v).

Consider next R < S with initial conditions in regime (iii). Here, the unique best

response is V , so the next step will bring the system out of this regime and into either

regime (vi), which is always a possibility, or regime (v), which is only a possibility if

S − 1
2N � r < S . As above, this limitation on the possibility of bringing the system into

regime (v) relies on the facts that Q′(r) � −2 and Q(S) = 0.

Finally, consider R < S with initial conditions in regime (vi). Here, V is the unique

best response, so each update that changes r or s is guaranteed to either decrease r

while increasing s (if a Paladin becomes a Villain) or maintain r while increasing s (if an

Apathetic becomes a Villain). If r � r∗, then there is a non-zero probability that the system

will undergo a sufficient number of these latter updates to bring it back into regime (v).

But, there is also a non-zero probability that a sequence of updates occurs whereby the

system remains in regime (vi) and attains r < r∗. Below this point, regime (v) can never

be re-entered, so the system evolves to Dystopia.

Hence, if R < S and I is disallowed, all initial conditions will eventually bring the

system into regime (vi), which leads to Dystopia with a non-zero probability. Therefore,

all initial conditions are guaranteed to eventually evolve to Dystopia, where the system

will then remain forever. �

The above argument is illustrated in Figure 3 on the right.

5 Conclusion

SBD’s evolutionary game showed that Informants alone may drive a society from Dysto-

pia to Semi-Utopia. As a consequence, its primary policy implication is that recruiting

Informants from the general population may be an overall valid approach in helping

reduce crime. SBD’s result stems from the primary role Informants play in their imitation

dynamics, where Informants render Dystopia unstable to small perturbations. In SBD’s

case, then, Dystopia may be reached under a set of initial conditions containing no In-

formants, but any infinitesimal deviation from this will drive the system to Semi-Utopia

in the long run. This is a universal result, in the sense that it holds across parameter space,

as long as Informants are present. It becomes natural then to ask what is the best way

to recruit Informants from the general population—and hasten the transition towards

Semi-Utopia—given specific costs associated with different player’s current strategies and

histories. This question is explored in Short et al. (2012).

Our current analysis presents a more nuanced picture: we find that under the best

response dynamics, the role Informants play depends on parameter choices, and that

their mere presence does not necessarily drive the system to Utopia as they did in SBD’s

original work. In particular, when S < R, Informants do not play a central role because

the strategy of committing crimes and reporting to authorities is never a best response.

On the other hand, when R < S , the Informant strategy plays a pivotal role in evolving

the system toward, and then maintaining, a level of reporting r � S , as long as the

initial reporting level r0 � R. Thus, the availability of I as a possible strategy is the only



Crime, punishment, and evolution in an adversarial game 335

channel allowing the system to reach and maintain a state very near Semi-Utopia, making

Informants a necessary, but not sufficient, criteria for the emergence of a low-crime state.

As discussed earlier, simply converting citizens to Informants in the context of best

response dynamics will not necessarily guarantee the system to evolve towards Utopia as

it did in SBD’s dynamics. Carefully choosing parameters, however, may allow the system

to make this transition; specifically, if parameters are chosen so that R < S . In terms of

the original model parameters, the R < S constraint implies that several conditions must

be met in order for the low-crime state to emerge. Let us first note that we may assume α,

δ, and ε to be fixed parameters intrinsic to the game between victim and victimizer, that

cannot be adjusted by law enforcement. We may instead allow the degree of punishment

θ to be a variable parameter that authorities may fine tune at will. In terms of θ, then,

the constraint R < S implies that

θ <
δ

ε2

[

α(ε + δ)2 − ε2
]

. (5.1)

In other words, the degree of punishment imparted on criminals must not be too onerous,

so as not to discourage the strategy I from being chosen. Hence, one policy implication

of the current work is that punishments should not be made too harsh, lest Semi-Utopia

be made unobtainable.

Furthermore, note that equation 5.1 can be made true only if α > ε2/(ε + δ)2. This

implies, though, that for a given α < 1, criminals may always choose a set of parameters

δ and ε that violates this second inequality, by choosing

ε �
δ

√
α

1 − √
α
, δ � 1 − √

α ; (5.2)

the latter condition arises from the constraint that δ + ε � 1. Thus, if retaliation against

witnesses is too large, the system has no chance of reaching a low-crime state, regardless

of θ. Of course, this raises another game theoretic challenge, this time for criminals: to

guarantee a crime friendly society, criminals must restrain themselves to stealing no more

than δ = 1 − √
α, but each criminal is individually motivated to choose a δ as large as

possible, i.e., 1. Hence, it seems plausible that only in societies where criminals themselves

are highly organized can such a situation arise, and if each criminal is acting purely in

his own best interest, the authorities should be able to arrange for punishment levels that

promote a Semi-Utopian state.

Of course, whether an imitation, best response, or some other dynamic best captures

actual decisional strategies is an empirical question. Are players perfectly rational and

capable of choosing a best response in each one-shot game, perhaps allowing for an initial

learning phase, or do they rather learn by imitation and by adaptation? In relation to the

experiments already performed (D’Orsogna et al. 2013), the best response dynamic leads

to an Informant role that is closer to reality—specifically, that Informants are necessary

to achieve Utopia. However, we note that when experimental conditions disallow the

Informant and a Dystopian state follows, the Dystopian state still contains a significant

minority of players who choose to be Paladins, despite the fact that Paladins are certainly

not the best response to the system configuration. Hence, it appears that while some
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players may in fact be payoff maximizing and are approximating the best response

dynamic, others may be attempting to maximize a different utility, perhaps one that

includes concepts such as fairness and justice. It would thus be interesting to further

analyse, using the experimental data, whether the actual test subjects followed either

of these two dynamics—best response or imitation—or some other decisional process

when faced with the choice of committing and reporting crimes. We leave this as future

work.
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