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Abstract

The self-exciting crime rate model known as the Hawkes process is the basis for some recently

developed predictive policing algorithms. Model parameters are often found using maximum

likelihood estimation (MLE), but this approach has several limitations. As an alternative, we

develop here a novel Bayesian sequential data assimilation algorithm for joint state-parameter

estimation by deriving an approximating Poisson-Gamma ‘Kalman’ filter, that allows for un-

certainty quantification for inhomogeneous Poisson data. The ensemble-based implementation

of the filter is developed in a similar approach to the ensemble Kalman filtering making the

filter applicable to large-scale real world applications unlike nonlinear filters such as the particle

filter. We demonstrate the filter on synthetic and real Los Angles gang crime data and compare

it against the “gold-standard” particle filter showing its effectiveness in practice. We investigate

the predictability of the Hawkes process using the Receiver Operating Characteristic (ROC) to

provide a useful indicator for when predictive policing software for a crime type is likely to be

useful. We also use the ROC to compare forecast skill of sequential data assimilation and MLE.

We find that sequential data assimilation produces improved forecasts over the MLE for the

gang crime data.

1 Introduction

Constructing computational algorithms for predictive policing is one of the emerging areas of math-

ematical research. Given that police departments worldwide are frequently asked to deliver better

service with the same level of resources, algorithms that can better allow authorities to focus their

resources could be of great value. To this end, there have been several methods developed over the

years to help make crime predictions and ultimately guide policing resources to areas where they

are likely to have the biggest impact.

One recently developed algorithm for predictive policing is the Epidemic-Type-Aftershock-Sequences

(ETAS) model described in some detail in [19, 20]. The idea behind the ETAS model is that crimes

are generated stochastically, but the rate of crime generation is history-dependent, such that crimes

occurring within an area will increase the rate of future crime generation in that same or nearby

areas for at least some period of time. In practice, the ETAS model functions by taking in daily,

up-to-date historical crime data in the form of event times and geolocations, processing them within
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the model’s mathematical framework described below, and then highlighting on a fixed grid (typi-

cally 150m squares) the top N locations likely to have crime on that day. The processing is done

by carrying out a time series analysis in each grid cell by fitting a self-exciting rate model known

as a Hawkes process to the historical data. The stochastic event rate λ(t) in this Hawkes process

is given by

λ(t) = µ+
∑
τj<t

qβe−β(t−τj), (1.1)

where µ is the baseline crime rate, q is a sort of reproduction number that is equal to the expected

number of future events spawned by any single crime occurrence, β is the decay rate of the increased

crime rate back to the baseline, and τj are the times of prior crime events. Hence, at any given

moment the crime rate is a linear superposition of Poisson processes, including the homogeneous

baseline rate and several exponentially decaying rates equal in number to the number of prior

events. The ETAS algorithm then carries out a maximum likelihood parameter estimation (MLE)

to find µ, θ, and β; typically θ and β are assumed to be the same across all grid cells, while µ is

allowed to vary from cell to cell. Finally, those N cells with the highest estimated λ are highlighted

for that day.

Two recent randomised field-trials conducted with police departments in Los Angles, CA and Kent,

UK [20] showed that the ETAS algorithm was able to predict 1.4-2.2 times as much crime as a

dedicated crime analyst using existing criminal intelligence and hotspot mapping practices. The

trials were also able to show that dynamic police patrolling based on the ETAS algorithm led to an

average of 7.4% reduction in crime volume at mean weekly directed patrol levels, whereas patrols

based upon analyst predictions showed no statistically significant effect.

Despite the success of these field-trials, one fundamental question for any predictive policing al-

gorithm is whether or not a given crime type is ‘predictable’ at any practical level, and by how

much. Analysing the operational predictability and forecast skill of any predictive policing software

is crucial in determining its worth. That is, even if one had a perfect model for the crime rate and

complete knowledge of all model parameters, would the resulting predictions be actionable in any

useful way? Currently, there has been no assessment from a basic level of when crime location and

rate is fundamentally predictable (or not), despite the fact that this knowledge would be useful for

both police forces and predictive policing researchers and companies.

Another problem with current techniques is that they typically have no ability to track uncertainty

in either the fitted parameters or the model predictions, which could arise due to noisy and limited

data or model selection errors. While forecasts such as the ETAS cell highlighting would not

necessarily take into account such uncertainty, it is important to know from a patrolling strategy

perspective. For instance, measures of uncertainty can help to determine if the police are more

likely to cover the most crime locations by increasing/decreasing the number of locations to patrol.

In order to overcome some of these problems and fill in gaps within the literature, we propose

here a sequential data assimilation approach to predictive policing that will systematically incor-

porate uncertainty and real-time tracking, enabling us to investigate the effect of uncertainty in

an operational context. To do this in a computationally efficient manner, we develop an Ensem-

ble Poisson-Gamma filter motivated by the Ensemble Kalman Filter (EnKF) used in geophysical

applications [6, 12]. Even though EnKF allows for non-normal prior distributions and relaxes the

assumption of a normal likelihood, a highly skewed and non-negative (posterior) distribution can
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be better approximated, for instance, by a gamma distribution. The uncertainty of crime intensity

rate and observations for some type of crimes (e.g. burglary) could be small, leading to a highly

skewed uncertainty for the burglary rate. By taking the EnKF philosophy we build a computation-

ally efficient and robust filter for the Hawkes process that compares well with the “gold-standard”

particle filter that is implemented in a large sample size limit. We note that while we are able to

use the gold-standard particle filter for a single 1D Hawkes process, in practice predictive policing

software (such as PredPol) has to carry out filtering for many grid cells making it computationally

infeasible.

We also assess the operational predictability and forecasting skills of Poisson rate models at a

fundamental level using the Receiver Operating Characteristic (ROC). This characteristic measures

the positive hit rate verses the false alarm rate and allows us to assess predictive policing models

precisely. The ROC has been suggested before by a few authors (e.g. [14]) as a good way to

measure the success or failure of predictive policing software; however their studies have focused on

particular data sets rather than a theoretical assessment of parameter regions where the Hawkes

process is predictable or not. By carrying out a theoretical synthetic experiment using the particle

filter, we find parameter regions where the Hawkes process is “ROC-predictable” and where the

data assimilation approach shows improved skill over the MLE based ETAS algorithm. We further

demonstrate our method on real LA gang violence data to show its effectiveness in practice.

The paper is outlined as follows. In section 2 we introduce ensemble filtering for sequential data

assimilation, provide an overview of the “gold-standard” particle filter approach, then develop our

own approach that we call the Ensemble Poisson-Gamma filter for a univariate variable. In section

3 we demonstrate both the accuracy and efficiency of our approach versus the particle filter on

simulated data generated via a Hawkes process that also allows a joint state-parameter estimation.

In section 4 we employ our method on real data from Los Angeles and assess the results. In section

5 we undertake a general study on the inherent predictability of Poisson rate models, then compare

our method to the ETAS algorithm. Finally, we conclude and discuss future directions and open

questions in section 6.

2 Ensemble-based filtering

Consider a counting process N(t) associated with the conditional intensity function

λ(t|Ht) := lim
δt→0

Pr(N(t+ δt)−N(t) = 1|Ht)

δt
, (2.1)

where Ht is the event history {0 < τ1 < · · · τN(t) < t}, τj is the time of the j-th count and τN(t) is

the time of the last event prior to t. For a small interval δt, we assume that the observation, called

yo, has likelihood conditional on λ(t) and is approximated by a Poisson model

Pr(yo|λ(t)) = (λ(t)δt)y
o

exp(−λ(t)δt), (2.2)

where yo = N(t+ δt)−N(t), i.e., the counts between time t and t+ δt. Note that we have assumed

that δt is small enough that at most one count is observed in the interval δt (i.e. yo = 1 or yo = 0).

For this work, we consider a discrete-time with δt small enough such that the above assumption is

approximately satisfied. Let yoj be the number of count the j-th interval, all of which is assumed
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to have the same size of δt and YN = {yok} for k = 1, . . . , N denote the collection of the data

up to the N -th count. The state of the system and model parameters during a time interval δt

are assumed to be a constant and we use vj to collectively denote both state and parameters in

the j−th time interval. One goal of this paper is to develop a discrete-time filtering method for

the intensity process described by (2.1) and (2.2) that involves a recursive approximation of the

probability density P (vj |Yj) given the probability density P (vj−1|Yj−1). In other words, we wish

to recursively make an inference of the unknown state of a dynamical system (as well as model

parameters) using only the data from the past up to the present.

The computation of P (vj |Yj) consists of two main steps: (1) Prediction step, which computes

P (vj |Yj−1) based on P (vj−1|Yj−1) using the transition kernel P (vj |vj−1); and (2) Analysis step,

which uses Bayes’s formula to compute P (vj |Yj) given a prior density P (vj |Yj−1) for vj . When

the prior density and likelihood are both normal, the normal posterior density P (vj |Yj) is given

in a closed-form expression by the Kalman filter. However, a numerical approximation is typically

needed in general cases. One such method, discussed more extensively below, is the particle filtering

(PF) method, which provides an ensemble approximation of P (vj |Yj). This method has become

increasingly popular in practical applications since it is relatively simple to implement and able

to reproduce the true posterior P (vj |Yj) in the large sample limit. Nevertheless, it suffers from

the curse of dimensionality and the design of efficient algorithms can be challenging. Though the

time-series examples considered in this work may all be tractable with the standard PF method,

our ultimate goal is to consider higher dimensional spatio-temporal data, which may require an

algorithm that is more scalable than PF. This motivates us to develop a novel ensemble-based

filtering algorithm aiming to assimilating data where the likelihood function is described by (2.2)

for the application to crime data analysis in mind. The new algorithm is built upon the Poisson-

gamma conjugate pair in the univariate case, which can be extended to a multivariate case via the

serial update scheme as commonly used in the serial-update version of the ensemble Kalman filter

(EnKF), see [2]. Unlike the PF, where particle weight is updated according to Bayes’s rule, the

new algorithm provides a formula that attempts to directly move the ensemble into the region with

a high posterior probability.

2.1 Particle filter (PF)

We present here how a basic particle filter (PF) works in a nutshell for our specific application and

encourage the reader to consult [8, 10, 13, 16, 17] for theoretical details and discussions in general

cases. The main of idea of PF is to recursively approximate P (vj−1|Yj−1) by M weighted particles

P (vj−1|Yj−1) ≈
M∑
i=1

w
(i)
j−1δ(vj−1 − v

(i)
j−1),

M∑
i=1

w
(i)
j−1 = 1.

In the prediction step, the particle approximation of P (vj |Yj−1) is simply drawn by propagating

v
(i)
j−1 according to a “state-space” version of the Hawkes process (1.1), which is the model (3.1) as

discussed in Section 3. The particle weight is unchanged in this step. Thus, the prediction step

yields an ensemble approximation

P (vj−1|Yj−1) ≈
M∑
j=1

w
(i)
j−1δ(vj|j−1 − v

(i)
j|j−1),
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where vj|j−1 ∼ P (vj |Yj−1).

In the analysis step, the data is assimilated to update the particle weight via Bayes’s formula. The

new particle weight is updated as

w
(i)
j =

w̃
(i)
j∑M

i=1 w̃
(i)
j

, w̃
(i)
j = Pr(yoj |v

(i)
j )w

(i)
j−1. (2.3)

This gives the ensemble approximation of P (vj |Yj) as {w(i)
j , v

(i)
j }. The above algorithm may lead

to the issue of weight degeneracy when only few particles have significant particle weights and all

other weights are negligibly small. In the extreme case, there could eventually be only one particle

left with weight 1. An additional step called resampling is conventionally employed to mitigate this

flaw. The implementation of the resampling step in this work is based on the residual resampling

method, see Appendix 6. Note that the above weight update is usually called the “bootstrap filter”,

which is the simplest version of PF, but it is usually considered to be inefficient since it may require

a large number of particle to well approximate the desired density, depending on many factors such

as the dynamic of the model, the likelihood function, and the dimension of the problem. A more

general weight update equation can be designed based on importance sampling and in some cases an

optimal proposal density can be achieved to minimise the variation of the sample representation.

The detail of the optimal particle filtering is out of the scope of the current work and in-depth

discussion may be found in [10, 17]. We will use the bootstrap filter in this work since we are able

to increase the sample size to the level where the ensemble distribution is unchanged as the sample

size increases. Due to its convergence property, the PF-generated ensemble, in a large sample

limit, will be used as the gold standard to test the performance of our novel ensemble method in

Section 2.2.

2.2 Poisson-Gamma filter

We now demonstrate how we develop a filtering algorithm based on the Poisson-Gamma conjugate

pair, specified through the mean and “relative variance” of the univariate random variable λ. It

will be seen later that the filtering formula will be more compact when using the relative variance

Pr = P/〈λ〉2, where 〈λ〉 is the mean of λ, instead of the variance of λ, denoted by P . Following

standard Bayesian analysis, it is simple to show that if λ has a gamma prior distribution with a

mean 〈λ〉 and “relative” variance Pr, then given the Poisson distribution on yo in 2.2, the posterior

on λ is also gamma distributed with mean and relative variance 〈λa〉 and P ar given by

〈λa〉 = 〈λ〉+
〈λ〉

P−1r + 〈λ〉δt
(yo − 〈λ〉δt)

(P ar )−1 = P−1r + yo.

(2.4)

Note that the conventional Bayesian scheme updates the posterior gamma distribution via the so-

called scale and shape parameters instead of mean and relative variance. The update formula (2.4)

will, however, suite well with our ensemble-based filtering algorithm that is intended to approxi-

mately sample the posterior density for a given prior ensemble; this is analogous to the well-known

Ensemble Kalman filter (EnKF) which is widely used to sample the posterior distribution when

the assumption of normality is not strictly valid but can still be approximately satisfied. In our

application, although the prior density may not be exactly a gamma distribution, which tends to
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be the case in practice, we may still insist to update our ensemble of λ so that its mean and relative

variance satisfy (2.4). This is drastically different from fitting the gamma distribution to the en-

semble of λ and then updating the scale and shape parameters of the gamma distribution through

Bayesian analysis and finally drawing the posterior sample from the posterior gamma distribution

described by the updated scale and shape parameters. The latter will always have the sample dis-

tributed exactly as a gamma distribution while the former can have a non-gamma sample. We will

refer to (2.4) as the Poisson-Gamma filter (PGF) and its ensemble-based version as the ensemble

Poisson-Gamma filter (EnPGF), which will be derived in the subsequent section.

We now explain how we will generate a posterior sample that satisfies (2.4). Let’s suppose that we

have a prior sample λi for i = 1, . . . ,M . Let A = [λ1, . . . , λM ]− λ̄ be the “anomaly” matrix of size

1×M , where λ̄ is the sample mean. Thus we can write the sample variance by P = (AAT )/(M−1)

and the relative sample variance Pr can be found accordingly using the sample mean. Given (2.4),

we can easily update the posterior ensemble mean, denoted by λ̄a, as follows:

λ̄a = λ̄+
λ̄

P−1r + λ̄δt
(y − λ̄δt) (2.5)

The update of the posterior ensemble anomaly, denoted by Aa, is also required so that the posterior

sample can be generated by λa = λ̄a+Aa. It is important that the anomaly Aa must be able to pro-

duce an ensemble that is consistent with the second line of (2.4). There are several ways to achieve

this, which are analogous to several ensemble-based schemes of EnKF, see [6, 15] for “stochastic”

formulations and [1, 4] for “deterministic formulations”. We focus only on the development of the

so-called stochastic formulation in the next section.

2.3 EnPGF: Stochastic update

We first note that, if yo = 0, (2.4) indicates that the ensemble mean should update, but the

ensemble relative variance should remain unchanged. In order to achieve this along with (2.5),

one can simply scale each ensemble member such that λai = λiλ̄a/λ̄, and the update is complete.

But, for yo 6= 0, we use a stochastic update scheme in which each individual ensemble member is

stochastically perturbed to achieve the sample variance that satisfies (2.4). This can be achieved

based on the following stochastic equation:

λai − λ̄a
λ̄a

=
λi − λ̄
λ̄

+ Pr(Pr + (yo)−1)−1
[
ỹi − ¯̃y

¯̃y
− λi − λ̄

λ̄

]
, (2.6)

where ỹi
iid∼ Ga(yo, 1) for i = 1 . . . ,M .

The derivation of (2.6) follows a similar idea of the gamma prior and inverse gamma likelihood

filter introduced by [3]. Denote each term in (2.6) as the following:

λai − λ̄a
λ̄a︸ ︷︷ ︸
:=w

=
λi − λ̄
λ̄︸ ︷︷ ︸
:=s

+Pr(Pr + (yo)−1)−1︸ ︷︷ ︸
:=c

[
ỹi − ¯̃y

¯̃y︸ ︷︷ ︸
:=t

−λi − λ̄
λ̄

]
, (2.7)

Note that E[w2] is the posterior relative variance P ar , E[s2] is the prior relative variance Pr, and

E[t2] = Var(ỹ)/(E[ỹ])2 = (yo)−1 since ỹ ∼ Ga(yo, 1). It is also simple to check that E[st] = 0.
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Then, by taking the expectation E[w2] given the equation above, it follows that

E[w2] = E[s2]− 2cE[s2] + 2c2E[s2 + t2]

P ar = Pr − 2cPr + c2(Pr + (yo)−1)

= Pr − 2Pr(Pr + (yo)−1)−1Pr + Pr(Pr + (yo)−1)−1Pr

= Pr − Pr(Pr + (yo)−1)−1Pr,

which, after some simple algebra, matches the update in (2.4). Based on the relative anomaly (2.6),

the anomaly Aa for the posterior ensemble can be readily obtained

Aa =

(
λai − λ̄a
λ̄a

)
λ̄a. (2.8)

Therefore, (2.5) and (2.6) together complete our ensemble update algorithm, which we call the

Ensemble Poisson-Gamma filter (EnPGF).

2.4 Tests: Gamma prior and mixture of gamma prior

In this section we compare the performance of EnPGF and the ensemble Kalman filter (EnKF) in

the scenarios where the analytical form of the posterior distribution is available. The sequential

aspect of the algorithm is not tested in these cases (i.e. there is just a single observation and δt = 1

in above formula). It will be shown that EnPGF outperforms EnKF in most cases, even in the case

of large observation yo. To this end, we first present a stochastic update method for the ensemble

Kalman filter (EnKF), which is a very popular method, especially in geophysical applications, for

approximation of filtered distributions in high-dimensional applications. The EnKF exploits the

mean and covariance update of the Kalman filter to sample a high probability region of the filtered

distribution in the applications where prior sample and observation likelihood are close to being

normal. For large λ, it is appealing to apply the EnKF to approximate the uncertainty of λ because

if yo ∼ Poi(λ), yo can be approximated by a normal distribution N(λ, λ). Nonetheless, we would

have to deal with the homoskedasticity issue. To get around this, we apply the variance stabiliz-

ing transformation, i.e., z =
√
yo + 1/4 ∼ N(

√
λ, 1/4). Therefore, we may use the transformed

observation equation for EnKF:

z =
√
λ+ η,

where η ∼ N(0, 1/4). The standard EnKF with stochastically perturbed observation provides a

formulation to update the sample as the following:

λai = λi +Ke(
√
yo + 1/4 + ηi − zi),

where zi =
√
λi, ηi ∼ N(0, 1/4) and Ke is the (ensemble-based) Kalman gain. The discussion of

above implementation of EnKF can be found in [6]. We will show in the subsequent section that,

albeit appealing, EnKF fails to provide a correct sample representation of the true posterior even

in the case of a large λ.

In the tests below, the ensemble size is 100 for both EnPGF and EnKF.

TEST 1: We want to ensure that when the prior sample comes from a gamma distribution, the

EnPGF in (2.6) can accurately sample the correct posterior density. We test the EnPGF and

EnKF algorithms for various gamma prior densities and observations, which are chosen so that
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the overlap between prior and posterior densities are gradually reduced. The experimental results

in Figure 1 show that EnPGF provides accurate samples in all cases. However, EnKF performs

reasonably well only in the case that the prior and posterior densities nearly overlap. Otherwise,

it consistently underestimate the mean and variance, even in the case of a large count data. This

result may suggest that if the prior uncertainty of λ is similar to a gamma density, EnKF could be

useful but only if the data is observed near the mode of the prior density. Thus, if a mathematical

model is used to generate a prior distribution, it would have to be able to predict the data very well

in order to allow accurate uncertainty quantification, which may be difficult to achieve in practice.

Figure 1: Comparing histograms generated by EnPGF and EnKF with the true posterior density

TEST 2: We violate the assumption of gamma prior density by using a mixture of two gamma

densities:

p(λ) = 0.5Ga(c1, d1) + 0.5Ga(c2, d2),

where Ga(a, b) is a gamma distribution with parameters a and b. The posterior density can be

analytically calculated. The results for yo = 4 and yo = 12 and various values of c1, d1, c2, d2

are shown in Figure 2. When the prior and posterior densities significantly overlap, both EnPGF

and EnPKF work reasonably well and they are only slightly different. However, as the prior and

posterior densities becomes more different, EnKF again shows a clear underestimation of the mean

while EnPGF can still reliably approximate the significant probability region of the true posterior

density, except in the extreme case where the overlap is very small.

3 State-space model for 1D Hawkes process

In order to implement the EnPGF for our chosen application, we require a state-space model for

the crime rate. We consider the stochastic state-space model

λ(t+ δt) = µ+ (1− βδt)(λ(t)− µ) + kNt, Nt ∼ Poi(λ(t)δt), (3.1)
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Figure 2: Comparing histograms generated by EnPGF and EnKF with the true posterior density for the

mixture of gamma prior densities. (Top left) yo = 4 and Prior distribution of λ is 0.5Ga(1, 1) + 0.5Ga(5, 1).

(Top right) yo = 4 and Prior distribution is 0.5Ga(1, 1) + 0.5Ga(3, 3). (Bottom left) yo = 12 and Prior

distribution is 0.5Ga(10, 1) + 0.5Ga(5, 1). (Bottom right) yo = 12 and Prior distribution is 0.5Ga(1, 1) +

0.5Ga(5, 1).

where λ(t) is assumed to be a constant in the interval [t, t + δt). Under the assumption of the

Poisson likelihood (2.2), the EnPGF is available for the state-space model (3.1), even though the

distribution of λ may be not strictly follow a gamma distribution.

Note that the model (3.1) approximates the first two moments of the Hawkes process (1.1), with

k = qβ. In fact, the evolution of the mean M(t) and variance V (t) of (3.1) satisfies the ODEs

M ′ =µβ + (k − β)M

V ′ =2(k − β)V + k2M ;
(3.2)

see Appendix A for a derivation. Figure 3 demonstrates a good agreement between the sample

mean and variance of the Hawkes process (1.1) and the solution of M(t) and V (t) in (3.2), both

in the transient and equilibrium stages. In fact, it is well known that the unconditional expected

value of the intensity process is E[λ(t)] = µ(1− k/β)−1, which is exactly the equilibrium solution

of M(t). Furthermore, one can readily show that the equilibrium variance of (3.2) is given by

V = k2βµ/2(β − k)2, which we find correctly predicts the variance of the intensity process from

simulations.

3.1 Tracking intensity

In this experiment, we generate the times of events and “true” intensity λ∗(t) from one simulation

of the Hawkes process (1.1) with µ = 2, k = 1.2, and β = 2 using Ogata’s algorithm [21]. The

simulation is taken in the time interval [0, 110] and we remove the transient stage of the intensity

in the interval [0, 10) and its corresponding events from the data. Thus, we will rename the time

interval [10, 110] to [0, 100] in this experiment. Assuming that all parameter values are known

but the current (or initial) intensity λ∗(0) is estimated by a sample drawn from the distribution

Ga(36, 6), which has mean 6 and variance 1. We wish to test the filtering ability of EnPGF to
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Figure 3: (Solid line) Mean and variance emperically approximated by the sample generated from the Hawkes

process (1.1) with parameter values µ = 0.1, k = 0.7, β = 1. (Dash line) Solutions of the odes (3.2).

track λ∗(t) given the data (i.e. times of events). The model (3.1) with δt = 0.1 is used as a forecast

model to generate the ensemble forecast, which empirically represents the prior distribution in the

data-assimilated step. Once the data become available at the end of each timestep, EnPGF uses

the data to provide a new uncertainty estimate of λ(t). Although the true intensity is known in

this controlled experiment, the filtering ability of EnPGF with a small sample size is tested by

comparing the posterior summary statistics against a “gold standard” sample statistic generated

by a particle filter with a large number of particles, which is 200,000 in this case. We denote the

sample mean of this gold standard sample by λ◦(t). As shown in Figure 4, the ensemble mean of

EnPGF with 20 samples is able to accurately track the correct posterior mean of the gold standard

PF, which is also very close to the true intensity. However, the particle filter with an equally small

ensemble size performs poorly, particularly due to its underestimation of the “temporal hotspots”.

The sample variance of EnPGF is, however, less smooth than the gold standard case due to the

small sample size, and it tends to be lower except in the intervals of the temporal hotspots.
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Figure 4: (Top) The true intensity is a realization of a Hawkes process (1.1). The intensity tracked by PF

with 200,000 particles is used as a “gold standard”. The estimates of λ obtained fom EnPGF and PF, both

of which uses 20 samples, are compared with the truth and gold standard. (Bottom) The evolutions of the

sample variance are compared.
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We also demonstrate that EnPGF has much less “monte carlo fluctuation” caused by a small sample

size. Figure 5 shows the absolute error |λ(t) − λ∗(t)| as well as |λ(t) − λ◦(t)| averaged over the

time t = 40 − 100 since the gold standard PF starts to converge at t = 40. Due to the stochastic

nature of the algorithm, we investigate the monte carlo variation by independently repeating 50

experimental runs for each sample size. We can see that the error |λ(t)−λ∗(t)| as well as variation

in the error for EnPGF are much smaller than PF for all sample sizes. In addition, the error of

PF wrt the gold standard, |λ(t) − λ◦(t)|, is significantly larger at a small sample size but become

slightly better than EnPFG in the large sample size limit, which is of course expected.

20 40 80 100 200 400 800

Sample size

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

20 40 80 100 200 400 800

Sample size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5: (Left) absolute error |λ∗(t) − λ(t)| and (Right) absolute error |λ◦(t) − λ(t)|, both of which are

averaged over the time t = 40 − 100. Again, λ∗(t) and λ◦(t) are the truth and the gold standard filtered

density, respectively. The plot shows the results from 50 experimental runs for each sample size; (Red Circle)

EnPGF and (Black cross mark) PF.

To investigate the Bayesian quality of the EnPGF, the posterior density (approximated by a prob-

ability histogram) at the final time t = 100 obtained from the gold standard PF is compared with

EnPGF for various sample sizes, see Figure 6. The gold standard posterior histogram evidently

exhibits a skewness, which is expected from using the gamma prior density, and EnPGF is able

to match this feature quite well. The results also show the convergence of EnPGF to the gold

standard posterior density in a large sample size limit. For a small sample size, the sample mean

still accurately approximates the true mean but the density of EnPGF is less smooth and too much

concentrated close to the true mean, so it tends to have a smaller variance than the gold standard

result as alluded briefly above based on one experimental run.
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Figure 6: The approximated density of the intensity at t = 100 obtained from the gold standard (black) and

EnPGF (blue). The results from 50 experimental runs for EnPGF are plotted for each sample size. The

cross mark indicates the true value of the intensity.
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3.2 Joint intensity-parameter estimation

This section develops a methodology to empirically estimate the joint posterior distribution of λ

and model parameters. Thus each ensemble member is now a vector (λ, θ1, . . . , θp) where p is the

number of unknown parameters and θj is the j-th unknown parameter for j = 1, . . . , p. The joint

intensity-parameter estimation based on EnPGF follows the same format as the so-called serial-

update version of EnKF introduced in [2] for a geophysical application. After obtaining a posterior

ensemble for the intensity, λa, based on EnPGF, the “innovation” of λ (i.e. λa − λ, where λ is the

prior obtained from the forecast) is linearly regressed to adjust the model parameters. Thus if the

i-th prior ensemble member of the j-th model parameter is θji, the i-th posterior ensemble member

is given by

θaji = θji +
Cov(θj , λ)

Var(λ)
(λai − λi), (3.3)

where Cov(θj , λ) is the sample covariance between the j-th parameter and the intensity prior λ

and Var(λ) is the sample variance of the λ prior.

The joint EnPGF is tested for the case where µ and k are unknown. The true parameters are

assumed to be µ = 2, k = 1.2 and β = 2 while the initial sample of the vector [λ(0), µ, k] is

randomly drawn from N([6, 6, 6], I3), where Im is an identity matrix of size m. The estimates given

by PF with 500,000 particles is used as a gold standard to examine the performance of EnPGF

and PF with a small sample size. We also compare the results against the maximum likelihood

estimate (MLE). The parameter vector [λ(0), µ, k] is estimated for the model (3.1) but replacing the

stochastic term by the observed times of events. By doing so, the model for MLE is nearly identical

to the data-generating model (i.e. Hawkes model (1.1)) for a sufficiently small δt. Therefore, the

model used by the MLE in this experiment is more ideal than PF and EnPGF. It is important to

bear in mind that in the MLE approach the entire history of observations up to time tk is used to

calculate the estimate at time tk while in the filtering approach the past observation is never used

again. Another difference is that the MLE uses a new estimate of [λ(0), µ, k] at time tk to produce

a new entire trajectory estimate of λ up to time tk while the filtering approach updates only the

ensemble of the current state λ(tk) (using only observation at tk), which then becomes an ensemble

of initial conditions for the next assimilation step. Figure 7 compares the results obtained from one

experimental run, where both EnPGF and PF have a sample size of 200. Note that the intensity

shown for the MLE is λ(tk) obtained by using the observation up to time tk, not the intensity

re-analysed over all observations at the final time, t = 100. The MLE clearly provides the most

accurate parameter estimates but the gold-standard PF converges slightly faster to the truth. More

importantly, the EnPGF, using a small sample size, also performs well and clearly outperform the

PF at the same small sample size. However, the EnPGF produces an over-spreading ensemble for

µ when compared to the gold standard PF.

In Figure 8, we show the absolute error with respect to the truth and the gold standard estimate.

We perform DA for 50 experimental runs for varying sample sizes. The error is averaged over the

time t = 40 − 100 since the gold standard PF starts to converge at t = 40. It can be seen that

EnPGF estimates of λ and k have substantially less monte carlo fluctuation than PF when using

small sample sizes. We also test the case where µ = 0.5, k = 1.2 and β = 2 and find similar results,

see Figure 9. This demonstrates the strength of EnPGF over PF in a small sample size. As for the

MLE, the results in Figures 8 and 9 show a high accuracy of the estimate for the true parameters;
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again the MLE setting is more ideal than filtering in this experiment.
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Figure 7: A result for the joint estimation of λ, k, and µ. The sample size for EnPGF and PF is both 300

particles. (Top) Comparison of the sample mean of λ(t). (Middle and Bottom) Comparison of the sample

mean and the 90% quantiles of µ and k for the gold standard (left), PF (middle) and EnPGF (right). Note

that the ML estimates for µ and k is overlaid on the plot of the gold standard result.
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Figure 8: (Top) absolute error |λ∗(t) − λ(t)| and (Bottom) absolute error |λ◦(t) − λ(t)|, both of which are

averaged over the time t = 40− 100 for the case µ = 2, k = 1.2 and β = 2. The EnPGF results are shown in

the black cross mark and the results of a small sample-size PF are shown in red circle. The MLE estimate

is plotted with the blue dashed line.

In Figure 10, we examine the Bayesian quality of the parameter estimates k and µ given by EnPGF

in a large sample size limit. In particular, we compare the histograms of the gold standard PF and

EnPGF (with 5000 samples) at the final time t = 100. Interestingly, in case of µ = 2, k = 1.2,

the EnPGF gives an estimate that is closer to the truth than PF, which becomes more evident in

case of µ = 0.5, k = 1.2. It is also clear that EnPGF produces samples of k and µ with a stronger

(negative) correlation than the gold standard PF. This is, of course, a result of estimating µ and k

through a ensemble-based linear regression through (3.3).
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Figure 9: (Top) absolute error |λ∗(t) − λ(t)| and (Bottom) absolute error |λ◦(t) − λ(t)|, both of which are

averaged over the time t = 40− 100 for the case µ = 0.5, k = 1.2 and β = 2. The EnPGF results are shown

in the black cross mark and the results of a small sample-size PF are shown in red circle. The MLE estimate

is plotted with the blue dashed line.

4 Data Assimilation for gang violence data

As a test of our new algorithm on actual crime data, we use a dataset of over 1000 violent gang

crimes from the Hollenbeck policing district of Los Angeles, CA over the years 1999-2002 and

encompassing roughly 33 known gangs. The data is analyzed purely as a time series denoted by

0 < τ1 < · · · < τn, though more information such as victim and suspect gang are available. The

summary histograms for the time-series data are shown in Figure 11. Most consecutive violent

events occurred within 6 hours and the observed frequency of zero events per day is nearly 40%.

The data under investigation here has been analyzed through the lens of a Hawkes process previously

used in [11]. One can check the suitability of the Hawkes process model for this data by first defining

the re-scaled time by

uk :=

∫ τk

0
λ(t|Ht)dt, (4.1)

where u0 = 0. It is well known that if τk is a realization from a given λ(t|Ht), then duk = uk−uk−1
are independent exponential random variables with mean 1; hence zk = 1 − exp(−duk) has a

uniform distribution U(0, 1]. The Kolomogrov-Smirnov (KS) test for zk can be used to diagnose

the consistency of a given model and observed time-series; more precisely, one can look for a

significant difference between the empirical cumulative distribution of the zk derived from re-scaled

time and the cdf of U(0, 1].

4.1 Model diagnostic

Suppose that the conditional intensity function is modelled by a Hawkes process as in (1.1), with

three parameters µ, β and k = qβ. The KS test for the gang data is carried out to diagnose the

consistency between the gang data and the Hawkes model with various model parameter values.

Only the first 300 events (out of 1031 events) are used for the test. In particular, we first choose

a parameter vector (µ, k, β) in the rectangle [0, 1.5] × [0, 1.5] × [0, 20]. By applying the re-scaled

time (4.1) to the gang data, we obtain zk for each value of the parameter vector and the KS test
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Figure 10: Joint histograms at the final time t = 100 of the gold stadard PF (Left) and EnPGF with 5000

sample (Right) for the case µ = 2, k = 1.2 (Top) and µ = 0.5, k = 1.2 (Bottom). The cross mark is the true

parameter values.

is used to compare zk and the uniform distribution as described above. The results are shown in

Figure 12 and it can be seen that that parameter values for which the P-value of the KS test is

above 0.1 is clearly within the 95% confidence interval, which is well approximated by the formula

1.36/
√
n+

√
n/10 for the length of observation n > 40 [7]. The geometry of these parameters

suggests a broad range of potential values for the decay rate β. The projection of the parameters

with P-value above 0.1 onto the (µ, k) plane for various values of β is plotted in Figure 13. It is

quite intuitive that the correlation between µ and k is negative for all fixed values of β since having

a larger µ would require a smaller k in order to explain the same data. Similarly, a large value of

µ would be required for a larger value of β in order to achieve consistency with the data.

We also estimate the parameters using the maximum likelihood estimator (MLE) for the first 300

events in the data. The likelihood function of the Hawkes process can be found in [21]. The

optimization of likelihood is computed based on a Nelder-Mead simplex algorithm in MATLAB.

As shown in Figure 12, the MLE lies within the set of parameters with P-value from the KS test

above 0.1. We will later use the parameters with a large P-value as the initial knowledge of the

model parameters in the Bayesian framework.
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Figure 11: (Left) Histogram of time between two events in a unit of one day. (Right) Histogram of the

number of violence crime event per day

Figure 12: (Left) KS plot of zk for the Hawkes model. The dash lines indicate the 95% confidence bound

and the green curves are the (observed) cumulative distribution obtained from simulated time-series with

parameter values with P-values over 0.1. The black curve is the cumulative distribution of a time-series

simulated with the MLE. (Middle) A histogram of P-values for uniform parameter grid points (k, β, µ) in

[0, 1.5]× [0, 20]× [0, 1.5]. (Right) The blue dots shows those parameter with P-value between 0.1 and 0.2 and

the red dots shows those with P-value over 0.2. The MLE is shown in the dark + marker.

4.2 Sequential Data Assimilation

We now apply EnPGF and PF to jointly track the intensity process λ(t) and model parameters

for the Hollenbeck gang violence data. Again, we use (3.1) as a forecast model for λ(t), where we

choose δt = 1/6 days, i.e., every 4 hours. As discussed earlier, the range of likely values of β is

very broad, so we fix its value to β = 2 and try to track only the parameters µ and k. We use two

different initializations:

Initialization 1: The data during the first 300 days is used to initialize the ensemble of parameters

through the KS test as already done in Section 4.1. In particular, we use the parameters on the

plane β = 2 with the P-value greater than 0.1, see again Figure 12, as the initial set of parameters.

If a sample size M is desired, M particles are randomly drawn from the finite set of the initial

parameters and then perturbed with a normal noise N(0, 0.01I2). We then choose the initial sample

λi(0) to be the same as µi for i = 1, . . . ,M .

Initialization 2: We draw initial sample (λi(0), µi, ki) from a multivariate normal distribution

N([6, 3, 3], 0.1I3).
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Figure 13: Projection of the parameters with P-valaue above 0.1 onto the (µ, k) plane for various values of

β, see also Figure 12

We estimate the filtered distribution of (λ(t), µ, k) in the time interval [300, 600] using PF with

200,000 samples for the above two initializations. We test EnPGF with 100 samples using the ini-

tialization 2. The results in Figure 14 shows that the estimation given by PF with initialization-1

parameters are relatively stable over the whole data assimilation period. In addition, the sample

computed from PF with the initialization 2 converges to the sample of the initialization-1 parame-

ters. This suggests that the set of parameters found by KS indeed agrees well with the parameters

tracked by the PF algorithm. The sample generated by EnPGF, see also Figure 14, show a similar

convergence but with a noticeable discrepancy in the parameter k. The empirical distribution at

the final time is compared in Figure 15. The marginal distribution of λ and joint distribution of

µ and k after the final data assimilation time step are compared for the cases of PF and EnPGF,

both with initialization 2. The sample supports of the two results mostly overlap but the sample

of EnPGF seems to be relatively overspreading.

5 Predictability and forecast skills

5.1 Predictability

The “predictability” of an event can be defined in many ways. We focus on a forecast system that

releases an “indicator” to alarm an upcoming event of interest. For example, in the context of

police patrolling, once patrol officers complete their current assignment, a forecast system may try

to suggest the location where criminal activity is most likely to happen within the next hour. In

the current time-series application, this kind of forecast system is simplified to predicting whether

or not the next violence crime would occur within the next H unit of times. After the intensity

is updated as a result of the n-th observed violence at time τn, we wish to use the intensity of

the Hawkes process at τn as an indicator variable. Therefore, we may choose a threshold of the

intensity, denoted by `, so that whenever λ(τn) > `, the forecast system will suggest to the user

that τn+1 − τn < H. As such, the event we wish to predict can be considered as a binary event,

say, Y = 1 if τn+1 − τn < H and Y = 0 otherwise. The so-called “hit rate” is defined by

H(`) := Pr(λ(τn) > `|Y = 1),

and the “false alarm rate” by

F(`) := Pr(λ(τn) > `|Y = 0).
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Figure 14: The results for the joint estimation of λ, k, and µ for Holenbeck gang violence data in the interval

[300, 600].

The relative characteristic curve (ROC), which is a graph of the pair (F(`),H(`)) for various

values of `, can be used to measure the performance of a forecast system. We are interested in

measuring the performance of two intensity-based forecast systems: (1) the ensemble mean of PF

and (2) Hawkes process with parameters obtained from MLE. As suggested in [5], the hit rate and

false alarm rate can be empirically estimated by the observed frequencies. Suppose that we have

the indicator-observation pairs (λJ , y(J)) for J = 1, . . . , n, sorted in ascending order such that

λ1 ≤ λ2 ≤ · · · ≤ λn and y(J) is the observation corresponding to λJ . The empirical hit rate and

false alarm rate are given by

H(J) = 1− 1

N1

J∑
m=1

y(J), F(J) = 1− 1

N0

J∑
m=1

1− y(J),

where N1 is the number of events y(J) = 1 and N0 = n − N1. The ROC plot is the graph

(F(J),H(J)) and its area under the curve (AUC) is usually used to diagnose the association

between the indicator variable and the observation. The AUC close to 1 is desired while AUC of

1/2 would suggest zero association. For empirical ROC, the AUC can be approximated by

AUC =
1

N0N1

( n∑
J=1

ny(J)− N1(1 +N1)

2

)
.

To understand the accuracy of the above forecast system in different parameter regimes of the

Hawkes process, we simulated 100 sample paths for various parameters and approximate AUC in

each case, assuming that all true parameters are known. The pairs (λJ , y(J)) in this case is the

intensity at the time of observation and y(J) = 1 if the the subsquent gang-related violence occurs
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Figure 15: (Left) Comparing the historgram of λ for PF (200,000 particles) with EnPGF (100 particles),

both of which use the initialization 2. (Right) Empirical joint distribution of k, and µ at the final step for

the gang violence data, which is initialized by using the sample spread obtained from the KS test with the

p-values above 0.1. The sample of 100-member EnPGF with the initialization 2 is shown in the solid black

dots on top of the approximated density obtained from PF

within a certain H unit of time; we set H = 0.1 in the experiment. All parameters we used yield

the same expected intensity, E[λ] = 4. Figure 16 shows that if the data is generated truly from a

Hawke process and we can precisely identify the parameters, the ability of the above intensity-driven

forecast system would depend on the parameter regime the data comes from, “low predictability”

or ”highly predictable” regimes. The former usually has a relatively large µ and small k/β while

the latter has a relatively small µ and k/β being close to 1. This is intuitive because in the highly

predictable regime the event is unlikely to be generated by the baseline intensity µ and most events

are actually the “offspring” of the preceding events. Recall that the ratio k/β describes the fraction

of events that are endogenously generated by the previous event. Thus, whenever the intensity is

above the baseline, the clustering is imminent. This allows the intensity-driven forecast system to

achieve a reliable forecast. Thus, for µ = 2, k = 1 and β = 2, the AUC results is poor (i.e. being

slightly above 1/2), see Figure 16. On the other hand, the parameter regime where µ � 1 and

k/β → 1 is clearly more predictable in a sense that we would be able to find a threshold ` that

produces a high hit rate with a low false alarm rate as seen from the “knee point” bending toward

upper left corner of the ROC plot. Also, it can be seen from Figure 16 that increasing both k and

β simultaneously while keeping their ratio constant can also increase the predictability.

5.2 Evaluation of forecast skills

It is usually true that most crime models are imperfect (i.e. the crime data are not exactly generated

by the models). Identifying model errors based on the data is a challenging task. Thus, in most

occasions, we may insist to use the model, knowing that it may have model error. In this section,

we will first allow the presence of artificial model error in the synthetic experiment and evaluate
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Figure 16: (Left) ROC curve, (Right) the histograms of the AUC for various values.

forecast skills of MLE-based and PF-based forecast systems. Then we will compare their forecast

skills for the gang data in a similar way.

We generate synthetic data from the Hawke process (1.1) with the true parameter vector [k∗, µ∗, β∗].

However, when using the model (3.1) to simulate the intensity process, we will use a certain β 6= β∗;

hence the model has an error. In particular, we consider three cases, all of which have the same

equilibrium mean of 2.5: (1) k∗ = 0.25, µ∗ = 9, β∗ = 10 and β = 2; (2) k∗ = 0.75, µ∗ = 7, β∗ = 10

and β = 2; (3) k∗ = 0.25, µ∗ = 9, β∗ = 10 and β = 2. The first 300 events of the synthetic data are

used to find the MLE for the parameters k and µ. We then fixed the MLE parameter and use them

to produce the intensity process for the further next 600 events through the model (3.1) (but again

replacing the stochastic term by the actual event). For the PF-based system, the data assimilation

for the first 300 events is run to produce the initial set of ensemble to perform sequential DA for the

next 600 events. The intensity process produced by MLE and the ensemble mean of the intensity

given by PF are then used to calculate the AUC for the two forecast systems. This experiment

is repeated independently for 50 times and the differences of AUC obtained from the two forecast

systems are shown in Figure 17. The PF-based system clearly shows a slightly better AUC in the

highly clustering regime (i.e. µ� 1 and k/β → 1) but becoming slightly poorer otherwise. Thus,

under the presence of the model error in term of β, the performance of MLE-based and PF-based

forecast system is roughly the same.

We now measure the performance of two intensity-based forecast systems in the gang violence

data. Again, we use the data [τ1, . . . , τ300] to determine the MLE and to spin up the PF algorithm.

We then use [τ301, . . . , τ600] to evaluate the forecast skill. In other words, λJ ≡ λ(τ300+J−1) for

J = 1, . . . , 300 and y(J) = 1 if τ300+J − τ300+J−1 < H, otherwise y(J) = 0. For PF, we fix the

decay rate β and generate our initial ensemble for µ and k according to Figure 13. The results of

empirical ROC are shown in Figure 18 for H = 1, 3, 6 hours. Also shown in Figure 18, the AUC

is quite poor, being close to 1/2 in all cases. Nevertheless, the PF-based forecast system shows a

slight improvement, especially when using β = 2.
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Figure 17: Differences in the emperical AUC obtained from PF-based and MLE-based forecast systems tested

for 50 independent experiments. The negative value means the PF-based system results in a higher AUC and
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Figure 18: Emperical ROC of PF-based forecast systems for different values of β and the Hawkes process

with the MLE parameters.

6 Conclusion

In this paper we have introduced a novel sequential data assimilation ensemble Poisson-Gamma

filtering (EnPGF) algorithm for discrete-time filtering suitable for real-time crime data. The ad-

vantage of sequentially updating the forecast in real-time while taking into account uncertainty in

model parameters could have a significant impact on predictive policing software which currently

uses MLE. The ensemble mean of EnPGF is used not only to track the true signal, which is the

crime intensity rate in this case, but also approximate the parameter of the Hawkes process. In

the numerical experiments, the tracking skill is justified by comparing the estimate with the true

signal and the particle filtering (PF) in the large sample size limit. The key strength of EnPGF

over PF is its improved accuracy as well as less monte-carlo fluctuation in the case of small sample

size. For the real-world time-series of gang violence data, the validity of EnPGF is testified by com-

paring with PF and the “likely” parameter region identified by the Kolmogrov-Smirnov statistics.

We showed that the results from these distinct data analysis methods happen to agree very well.

Nevertheless, our experimental results suggest an issue where EnPGF tends to produce over/under-
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spreading ensemble for some parameter estimates; hence probabilistically over/under-confidence in

the parameter estimates. The implication of this in term of forecasting would also be an interesting

future work. Although we demonstrate the application of the new method only to time-series data,

the extension to high-dimensional spatio-temporal data can be achieved by serially processing M

grid cell time-series analysis one at a time and use the ensemble updated through data assimilation

of the first grid cell as a new prior for data assimilation in the second grid cell and so on. This

serially-updated formulation is one of the commonly used implementations for EnKF [2]. Our work

underway will develop this high-dimensional extension of EnPGF and study its effectiveness with

burglary data.

In this paper we have also examined the forecast skills provided by sequential data assimilation

for the time-series Hawkes model which is crucial for determining the usefulness of any predictive

policing software. We carried out sequential data assimilation using a particle filter with a large

sample size to construct the ensemble forecast. We then studied the forecast system whereby

the elevated risk is alerted whenever the crime intensity rate predicated by the ensemble forecast

exceeds a given threshold. Thus, the ROC analysis is a suitable tool to study the ability of such a

forecast system. For the gang violence data, our results show that data assimilation gives a small

improvement in the forecast skill compared with the data-driven Hawkes process, in which the

stochastic part in (1.1) is substituted by the observed data. The latter is, in fact, analogous to the

ETAS system. A small improvement would be highly important to predictive policing software,

since one can never expect to have a perfect model of urban crime, so making improvements in the

assimilation step are where one can hope to make significant gains.
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Appendix A: Derivation of (3.2)

We define the quantities M(t) := E[λ(t)] and V (t) := Var[λ(t)] to be the mean and variance of the

state space model defined in (3.1). We compute M(t+ h) as follows

M(t+ h) =E[λ(t+ h)],

=E[E[λ(t+ h)|λ(t)]],

=E[µβh+ (1 + (k − β)h)λ(t)]

=µβh+ (1 + (k − β)h)M(t).

Hence, we find subtracting M(t) from both sides, dividing by h and taking the limit h → 0, that

we get the first ODE in (3.2).
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The second ODE in (3.2) is found by computing V (t+ h) as follows

V (t+ h) =Var[λ(t+ h)],

=E[Var[λ(t+ h)|λ(t)] + Var[E[λ(t+ h)|λ(t)]],

=E[k2Var[N(t)]] + Var[µβh+ (1 + (k − β)h)λ(t)],

=E[k2λh] + (1 + (k − β)h)2Var[λ(t)],

=hk2M(t) + (1 + (k − β)h)2V (t).

Subtracting V (t) from both sides, dividing by h and taking the limit h→ 0, that we get the second

ODE in (3.2).

The system (3.2) has the general solution

M(t) =
µβ

β − k
+

(µ+m0(k − β))

k − 1
e(k−β)t,

V (t) =
1

2(k − β)2

(
µβk2 − 2(µ+m0(k − β))k2e(k−β)t + (µβk2 + 2v0(k − β)2 + 2k2(k − β)m0)e

2(k−β)t
)
,

where M(0) = m0, V (0) = v0. In particular, the equilibrium state is given by

M =
µβ

β − k
, V =

µβk2

2(β − k)2
.

Appendix B: Resampling

In the resampling step, particles with low weights are removed with high probabilities and particles

with high weights are multiplied. Thus the computation can be focused on those particles that

are relevant to the observations. There are a number of resampling algorithms and most common

algorithms are unbiased; hence the key difference in performance lies in the variance reduction,

see [9] for a review and comparison of common resampling schemes. The most basic algorithm is

the so-called simple random resampling introduced in Gordon, which is also known as multinomial

resampling. Suppose that the original set of weighted particles is {wj , vj} for j = 1, . . . ,M . The

simple resampling generate a new set of particles {1/M, v∗k} for k = 1, . . . ,M based on the inverse

cumulative density function (CDF):

Step 1 Simulate a uniform random number uk ∼ U [0, 1) for k = 1, . . . ,M

Step 2 Assign v∗k = vi if uk ∈ (qi−1, qi], where qi =
∑i

s=1ws.

In this work, we use the residual resampling algorithm introduced in [18] to reduce the monte carlo

variance of the simple random resampling. In this approach, we replicate Nj exact copies of vj

accodring to

Nj = bMwjc+ Ñj ,

where bc denotes the integer part and Ñi for j = 1, . . . ,M are distributed according to the multi-

nomial distribution with the number of trials M −
∑M

j=1bMwjc and probability of success

pj =
Mwj −

∑M
j=1bMwjc

M −
∑M

j=1bMwjc
.
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The simple resampling scheme can be used to select the remaining M −
∑M

j=1bMwjc particles;

hence obtaining Ñj .

The resampling scheme should be used only when it is necessary since by selecting out only high-

weight particles, it causes the particle depravation. A criterion to activate the resampling step in

particle filtering is usually done by setting a certain threshold for the effective sample size, defined

by

Neff =
1∑M

i=1w
2
i

.

In this work, we use the resampling step only when Neff < 1/8.
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