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�BSTR�CT

Wepropose various self-exciting point processmodels for the timeswhen e-mails are sent between individ-
uals in a social network. Using an expectation–maximization �EM)-type approach, we �t thesemodels to an
e-mail network dataset fromWest Point Military Academy and the Enron e-mail dataset. We argue that the
self-exciting models adequately capture major temporal clustering features in the data and perform bet-
ter than traditional stationary Poisson models. We also investigate how accounting for diurnal and weekly
trends in e-mail activity improves the overall �t to the observed network data. Amotivation and application
for �tting these self-excitingmodels is to use parameter estimates to characterize important e-mail commu-
nication behaviors such as the baseline sending rates, average reply rates, and average response times. A
primary goal is to use these features, estimated from the self-exciting models, to infer the underlying lead-
ership status of users in the West Point and Enron networks. Supplementary materials for this article are
available online.

1. Introduction

Several studies on e-mail communication have shown that the
times when individuals send e-mails deviate from a stationary
Poisson process (Barabási 2005; Malmgren et al. 2008). Two
important properties of the stationary Poisson process are that
the mean number of events per unit time is constant, and the
time intervals between consecutive events (interevent or wait-
ing times) follow an exponential distribution. Barabási (2005)
provided empirical evidence showing that the interevent times
for e-mails are better approximated by a heavy-tailed power-law
distribution. Essentially, this means the sending times for a typ-
ical e-mail user are highly clustered: short periods with lots of
activity are separated by long periodswhennomessages are sent.

To account for the clustering and uneven waiting times
observed in e-mail tra�c, Barabási (2005) proposed a prior-
ity queue model, in which high priority e-mails are responded
to more quickly than low priority e-mails. We take a di�erent
approach by considering self-exciting point process models for
e-mail tra�c. In general, self-exciting point processes describe
random collections of events where the occurrence of one event
increases the likelihood that another event occurs shortly there-
after. E-mail tra�c may be viewed as a self-exciting point pro-
cess since each e-mail received by an individual increases the
likelihood that reply e-mails are sent shortly thereafter. In other
words, sending an e-mail can trigger a chain of messages sent
between individuals in rapid succession.

The application of self-exciting point processes to modeling
and characterizing social networks is a relatively new research
topic. Some recent work includes self-exciting models for retal-
iatory acts of violence in a Los Angeles gang networks (Stom-
akhin, Short, and Bertozzi 2011;Hegemann, Lewis, and Bertozzi
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2012) and face-to-face conversation sequences in a company
(Masuda et al. 2013). As in these previousworks, wemodel event
times (e-mails) on a social network as a multivariate Hawkes
process (Hawkes 1971; Hawkes and Oakes 1974) with an expo-
nential triggering function.

This article is primarily focused on describing, modeling,
and analyzing two interesting e-mail network datasets: the
IkeNet dataset collected from the log �les of e-mail transactions
between 22 o�cers attending West Point Military Academy
over a 1-year period, and the Enron dataset collected from
151 employees over a three-year period before the company’s
demise. The IkeNet dataset o�ers a unique opportunity to study
e-mail communication on a small and relatively �at social net-
work, in which all o�cers in the network are enrolled in the
same academic program. The Enron dataset, on the other hand,
is much larger and users in this network exhibit a complex and
rich corporate hierarchy. Moreover, it is perhaps the only cor-
porate e-mail corpus freely available to the public for research.
Using these datasets we seek to address the following ques-
tions:

(a) Do the estimated self-exciting models perform sig-
ni�cantly better than stationary Poisson models and
account for the observed temporal clustering in e-
mail network tra�c?

(b) Does the incorporation of diurnal and weekly trends
into the baseline (background) rate at which e-mail
conversations are initiated provide an overall better
�t to the observed network data?

(c) How can the estimated parameters be used to charac-
terize important communication behaviors, such as
the average reply rate and response time, for individ-
uals in the network and the network as a whole?
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(d) How can various features of e-mail communication,
estimated from the self-exciting models, be used to
predict and rank leaders within a social network?

The prediction of network leadership from communication
patterns is an important question. Many methods have been
proposed in the literature to address this issue (Shetty and Adibi
2005; Tyler, Wilkinson, and Huberman 2005; Creamer et al.
2009). Our contribution is to show that a point process analysis
provides additional insight into the leadership roles and hierar-
chy underlying a communication network. A distinctive aspect
of both the IkeNet andEnron datasets is that ground-truth about
the actual leadership status of individuals in these networks is
readily available, and provides a means to evaluate and validate
our proposed covariates for inferring leadership.

This article is organized as follows: In Section 2, we pro-
vide some descriptive statistics for the IkeNet dataset. In Sec-
tion 3, we propose various self-exciting models for e-mail com-
munication networks and �t these to the IkeNet data using an
expectation–maximization (EM)-type procedure. In Section 4,
we describe how to use our parameter estimates to characterize
communication behaviors and predict leadership for the IkeNet
social network. In Section 4, we also discuss model comparisons
and diagnostics. In Section 5, we compare the models �t to the
Enron and IkeNet datasets and use parameter estimates for the
Enron e-mail network to describe and discriminate leadership
roles within the corporate hierarchy. In the Discussion Section,
we summarize and speculate about our results and suggest pos-
sible future directions for this research. In theAppendix, we spell
out the simulation algorithm we use to generate realizations of
the IkeNet e-mail network from the �tted self-exciting models.

2. IkeNet Dataset and Descriptive Statistics

The IkeNet dataset contains the sender, receiver, timestamp, and
identi�cation for each message sent between 22 o�cers in a
closed network over a one-year period beginning in May 2010.
E-mails were sent with Blackberries, which were given to the
o�cers as incentive for their participation in the study. The o�-
cers were anonymized in the data for privacy, therefore we will
refer to them by number (1–22) instead of name. Only 3.3� of
e-mails sent in the IkeNet dataset have more than one recipi-
ent; thus for simplicity we treat each sender–recipient pair as an
e-mail (e.g., one e-mail sent to three recipients is coded as three
separate e-mails). After removing duplicates and instances when
o�cers sent messages to themselves, we are left with a total of
approximately 8400 e-mails.

Each o�cer was asked in a questionnaire to list the o�cers,
within the network, whom they considered strong team andmil-
itary leaders. This supplementary survey data, providedwith the
IkeNet e-mail data, allows for a particularly unique opportunity
to make connections between e-mail communication behav-
iors and leadership attributes. Many previous studies of e-mail
activity have only focused on describing andmodeling temporal
communication patterns (e.g., Barabási 2005; Malmgren et al.
2008), and have not looked at the relationships between those
communication patterns and the attributes and perceptions of
users in the network. Questions such as how one might predict
perceived leadership status using only observations of network
communication are addressed in Section 4.

Figure � Histogram density of the number of e-mails sent each hour of the day
over the -year observation window. The smoother curve was formed using kernel
density estimation with a fixed bandwidth (Scott ).

Descriptive statistics for the IkeNet dataset reveal daily,
weekly, and seasonal trends in e-mail tra�c. Figure 1 is a his-
togram of the number of e-mails sent in the network each hour
of the day, over the yearlong observation window. This plot
reveals a clear diurnal rhythm: e-mails weremost frequently sent
mid-day and activity diminished during the night. Decreased
activity during lunch and dinner is also visible, around noon and
7 p.m. Figure 2 is a bar plot of the number of e-mails sent each
day of theweek. The e-mail activity among these o�cerswas evi-
dently substantially greater during weekdays (Mon.–Fri.) than
on the weekend.

Figure 3 is a time series plot of the number of e-mails sent in
the network each day. The smoother curve helps reveal monthly
trends. For instance, there was a drop in network activity in
January; this was probably due to the holidays and o�cers being
out of town. The time series plot exposes two days with an
unusually high amount of e-mail tra�c. The �rst peak occurred
on February 2, 2011 (162 e-mails sent) and coincided with esca-
lating violence in the Egyptian revolution. The second peak
occurred on May 2, 2011 (166 e-mails sent) and coincided with
the assassination of Osama bin Laden. These outliers are also

Figure � Proportion of e-mails sent each day of the week over the -year observa-
tion window.
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Figure � Time series plot of number of e-mails sent by date.

present in Figure 4, a right skewed histogram that shows that on
a typical day, fewer than 30 e-mails are sent within the network.

The e-mail network itself is shown in Figure 5with node
sizes proportional to the number of e-mails sent by each o�-
cer, and edge widths proportional to the number of messages
sent between o�cers. O�cers 9, 18, and 13 stand out for sending
the highest number of e-mails in the network. The network plot
reveals pairs of o�cers that communicate frequently with each
other, as well as those o�cers that communicate infrequently
with the network as a whole. For instance, o�cer pair (9,18)
stands out as being most proli�c, as these o�cers sent a total
of 1042 e-mails to each other. In contrast, o�cers 1 and 21 are
distant from the network and have very few e-mail interactions.
Figure 5 also illustrates the overall sparsity in e-mail communi-
cation on this closed network.

3. SelfExcitingModels for IkeNet EMail Activity

Self-exciting point processes have their origins in seismology
where models were developed to characterize the so-called
branching structure of earthquakes, whereby each mainshock
potentially triggers its own aftershocks sequence (Ogata 1988,
1998). The Hawkes process (Hawkes 1971; Hawkes and Oakes
1974) was one of the earliest models of the conditional intensity,
λ�t ), for the expected rate at which earthquakes occur at time t ,

Figure � Histogram of the number of daily e-mails.

Figure � Plot of the IkeNet e-mail network with node sizes proportional to the
number of e-mails sent by eachofficer, and edgewidths proportional to thenumber
of e-mails sent between officers.

given all earthquakes that occurred previously at times tk < t :

λ�t ) = µ �
�

tk<t

g�t − tk). (1)

In this model, mainshocks occur at a constant baseline rate µ

over time, and each earthquake at time tk elevates the risk of
future earthquakes (aftershocks) through the triggering func-
tion g�t − tk), which is often assumed power law or exponen-
tial. Besides seismology, self-exciting point processes have found
application in many other areas such as modeling the spread
of invasive plant species (Balderama et al. 2012), insurgencies
in Iraq (Lewis et al. 2011), and domestic crimes (Mohler et al.
2011).

In this section, we extend the Hawkes process to model e-
mail activity on a social network, and �t these models to the
IkeNet dataset. Like earthquakes, e-mail communications may
be viewed as branching processes. The “mainshocks” are the
times when an o�cer initiates e-mail conversations; the “after-
shocks” are the reply e-mails, which are sent in response to e-
mails received from other o�cers in the network. Our approach
is similar to that of Halpin and De Boeck (2013), though we
model e-mail tra�c on a network, not just between two people,
and propose ways to account for circadian and weekly trends.

We primarily consider models of e-mail activity from an
egocentric point of view, with the self-exciting point processes
placed on the nodes (o�cers) of the network to model the
rate of sending e-mails. Other relational views as considered by
Perry and Wolfe (2013) include, for instance, the modeling of
dyadic interactions whereby the point processes are placed on
the directed edges of the network to measure the rate of sending
or receiving e-mails between pairs of o�cers.

For a thorough introduction to point processes, conditional
intensities, and closely related constructs, see Daley and Vere-
Jones (2003). Here, we brie�y review a few necessary prelimi-
naries.
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A point process is a random collection of points, with each
point falling in some observed metric space, S. Here, as in many
applications, the observed space is a portion of the real time line,
[0,T ], and our observations of the e-mail network may be con-
sidered a sequence of 22 point patterns, or equivalently a single
multivariate point pattern. Point processes are typically mod-
eled by specifying their associated conditional intensity pro-
cesses, as all �nite-dimensional distributions of a point process
are uniquely characterized by its conditional intensity process,
assuming it exists. For a temporal point process on a closed time
interval [0,T ], the conditional intensity may be de�ned as the
in�nitesimal expected rate at which points occur around time t ,
given the entire history, Ht , of the point process up to time t :

λ�t ) = lim
�t↓0

E[N�t, t � �t )|Ht ]

�t
. (2)

The Hawkes process given by (1) is an important conditional
intensity model for a self-exciting point process. It may read-
ily be extended to model the rate at which each IkeNet o�cer i
sends e-mails at time t (hours) given all messages received by i
at times rik < t :

λi�t ) = µi �
�

ri
k
<t

gi
�
t − rik

�

= µi � θi
�

ri
k
<t

ωie
−ωi�t−rik). (3)

In the context of e-mails, the background rate µi can be inter-
preted as that rate at which o�cer i sends e-mails that are not
replies to e-mails received from other o�cers. In other words,
µi is the baseline rate at which i initiates new e-mail threads.
Each message received by o�cer i at time rik elevates the over-
all rate of sending e-mails at time t > rik, through the triggering
function gi�t − rik), which is assumed to be exponential. Time
t is expressed continuously as hours since midnight on the day
when the �rst e-mail was sent in the network.

In model (3), the background rate µi is assumed to be con-
stant over the observation window [0,T ]. This is unrealistic in
light of the diurnal and weekly nonstationarities suggested in
Figures 1 and 2. Nonstationary forms for the background rate
will be discussed subsequently in Section 3.1.

The exponential triggering function is perhaps not unreason-
able. For instance, Figure 6 shows that the survival function of
the inter-event times for the observed e-mails sent by each o�-
cer in the network falls reasonably close to the 95� con�dence
envelope formed from 100 simulated realizations of the IkeNet
e-mail network using estimated model (3). This plot indicates
that the inter-event time distribution for the estimated model
closely resembles that of the observed data. A description of the
simulation procedure for model (3) is given in the Appendix.

As an illustration of model (3), the top panel in Figure 7

shows the estimated conditional intensity for o�cer 13, λ̂13�t ),
over a 3 day time period. The clustering in the times when e-
mails are sent and received are easily discerned in this plot, and
are characteristic of Hawkes point processes.

The parameters of model (3) characterize general e-mail
communication habits of each o�cer. For instance, θi can be
interpreted as the reply rate for o�cer i, since it is the expected
number of reply e-mails sent by o�cer i per e-mail received from

Figure � Survivor plot of the interevent times for e-mails sent by each officer in
the network (black line). A � confidence envelope was formed by simulating the
network  times from the fittedmodel () and computing the survivor function for
each realization. The pointwise . and . quantiles of the simulated survivor
functions are plotted in gray.

another o�cer in the network, as

lim
T→∞

� T

rki

θiωie
−ωi�t−rik)dt = lim

T→∞
θi

�
1 − e−ωi�T−rik )

�
= θi.

Note, in this work, a “reply e-mail” is directed toward the net-
work, and is not necessary sent directly back to the user that
sent the original e-mail that triggered the reply. The distinction
between a “reply” and “nonreply” e-mail is that a reply e-mail
is triggered by and sent in response to a previously received
e-mail, while a nonreply e-mail is not provoked by a received
e-mail and indicates the initiation of a discussion thread. The
integrated triggering function over a �nite time period will be
slightly less than θi, but for the IkeNet data, where T = 8640
hr and ω−1 << T (see Table 1), θi will be extremely close to
the expected number of replies per e-mail received for o�cer i.
The speed at which o�cer i replies to e-mails is governed by the
parameter ωi, with larger values of ωi indicating faster response

Figure � Top panel shows the estimated conditional intensity for officer  over a
-day period using the Hawkes model with the stationary background rate (). The
bottom panel shows the estimated conditional intensity for officer  over the same
-day period using the Hawkes model with the nonstationary background rate ().
The downward triangles represent the timeswhenmessages are received,while the
upward triangles represent the times when messages are sent.
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Table � Parameter estimates, standard errors, and maximum log-likelihood values
formodel (). Standard errors are computedby the rootmean square deviation from
 simulations of the estimated model.

i Nsend
i µ̂i θ̂i ω̂i li��̂i)

  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.

times for o�cer i. Indeed, ω−1
i is the expected number of hours

it takes for o�cer i to reply to a typical e-mail.

3.1. Nonstationary Background Rate

Model (3) makes the assumption that the background rate is
a stationary Poisson process, which means in this context that
the rate of creating new e-mail threads is constant at all times.
This is not realistic due to the presence of circadian and weekly
trends in e-mail tra�c (see Figures 1 and 2). Malmgren et al.
(2008) argued that the clustering and heavy-tails in the inter-
event distribution of times when e-mails are sent is partially a
consequence of rhythms in human activity (e.g., sleep, meals,
work, etc.), and the authors explicitly modeled periodicities in
e-mail communication as a nonstationary Poisson process. We
take a similar approach by considering a nonstationary back-
ground rate for our Hawkes process model (3) of e-mail tra�c:

λi�t ) = νiµ�t ) �
�

ri
k
<t

gi
�
t − rik

�

= νiµ�t ) � θi
�

ri
k
<t

ωie
−ωi�t−rik), (4)

where νi is a user-speci�c parameter and µ�t ) is a shared base-
line density function that accounts for daily and weekly rhythms
in e-mail activity. We de�ne the integral of µ�t ) to equal 1 over
the observation window [0,T ]. Our estimate of µ�t ), denoted
µ̂�t ), is found nonparametrically by a weighted kernel smooth-
ing estimate over the e-mails sent by all o�cers (Figure 8);
the details of this estimation procedure are given subsequently.

Since
� T

0 νiµ�t )dt = νi, the parameter νi can be interpreted as
the expected number of background events, or nonreply e-mails,
sent by o�cer i over the time interval [0,T ].

If we let m ∈ {0, . . . , 59} be the minute, h ∈ {0, . . . , 23} the
hour, and d ∈ {0, . . . , 6} the day �Mon = 0, . . . , Sun = 6) cor-
responding to time t ∈ [0,T ], then our estimate ofµ�t ) is given

Figure � Estimated background rate density µ̂�t ) for the IkeNet e-mail network
(solid black curve) using model () after convergence of the EM-type algorithm. The
dashed curve is the initial estimate of thebackground rate density using equal prob-
abilityweights. This figure only shows one period (i.e.,  week,Mon.–Sun.) of µ̂�t ). A
� simulation confidence envelope was formed by reestimating the background
rate for  simulated realizations of fitted model (), and the pointwise . and
. quantiles are plotted in gray.

by µ̂�t ) = Z · f̂ �h � m/60)w�d), where

f̂ �h � m/60) =
1

σ

N�

k=1

PkK

�
h � m/60 − hk

σ

�

=
1

σ

N�

k=1

Pk
1

√
2π

e−
�h�m/60−hk )2

2σ2 , (5)

w�d) =

N�

k=1

PkI�dk = d), (6)

and Pk is a probability weight that sums to one over k ∈
{1, . . . ,N}, where N is the total number of observed messages
sent in the network. The notation hk and dk denote the hour after
midnight and day of week for the kth e-mail sent in the network.
The constant of proportionality Z is chosen to ensure that µ̂�t )
integrates to 1 over [0,T ]. An accurate approximation of Z can
be found using a Riemann sum.

To get an initial estimate of µ̂�t ), we select equal proba-
bility weights Pk = 1/N, making (5) the standard kernel den-
sity estimate of the histogram of the number of e-mails sent by
hour of day (Figure 1). For this kernel smoothing, we choose a
Gaussian kernel K�·) with bandwidth σ set to the default value
suggested by Scott (1992). To account for weekly trends, f̂ �·)
is multiplied by a weight w�d), which is simply the proportion
of all observed messages sent in the network on day d when
Pk = 1/N (Figure 2). Our initial estimate of the background rate
density µ̂�t ), with equal probability weights, is plotted as the
dashed curve in Figure 8. Note that µ̂�t ) is periodic, with period
equal to 1 week (7 days/168 hr), that is, µ̂�t � 168) = µ̂�t ), and
one period of µ̂�t ) is shown in this �gure. In Section 3.3, we
will explain how to improve our estimate of µ̂�t ) by using the
probabilities each e-mail is either a nonreply (background event)
or reply (o�spring event) to simultaneously estimate the model
parameters and nonparametric background rate density.

To illustrate the �tted model, the lower panel of Figure 7
shows the estimated conditional intensity for o�cer 15 under
model (4). The troughs in the estimated conditional intensity
in Figure 7 correspond to times when few e-mails are sent and
received.
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3.2. AlternativeModel

One shortcoming ofmodels (3) and (4) is that the reply rate θi for
o�cer i does not depend on who sends an e-mail to i. Accord-
ing to this model, o�cer i sends the same expected number of
reply messages to each e-mail received, regardless of the sender
j. To incorporate some pairwise interactions between o�cers,
we consider the following alternative Hawkes process model for
the rate at which o�cer i sends e-mails at time t :

λi�t ) = νiµ�t ) �
�

j

�

r
i j

k
<t

gi j

�
t − r

i j

k

�

= νiµ�t ) �
�

j

�

r
i j

k
<t

θi jωie
−ωi�t−r

i j

k
). (7)

The triggering function, gi j�t − r
i j

k ), gives the contribution of

the kth message o�cer i receives from j at time r
i j

k to the condi-
tional intensity at time t . The inner summation is over all mes-

sages o�cer i receives from j at times r
i j

k < t , and the outer sum-
mation is over all o�cers j in the network. Note that one may
also model a distinct ωi j and νi j for each sender–recipient pair,
however with the current dataset this may not be advisable due
to the sparsity in the number of e-mails sent between certain
pairs of individuals (Figure 5) and the large number of addi-
tional parameters to estimate.

The parameters of model (7) help characterize e-mail com-
munication behaviors between o�cers. For each o�cer i, there
are 21 parameters θi j, each of which may be interpreted as
the expected number of replies i sends per e-mail received
from j. This additional information is gained at the expense of
adding 20 more parameters per network member than model
(4). (Instances when o�cers send e-mails to themselves have
been removed, so the reply rate θii is not included in model (7).)
Amore in-depth comparison betweenmodels (4) and (7) is pro-
vided in Section 4.

3.3. Parameter Estimation

The parameters of models (3), (4), and (7) can be estimated
by an expectation-maximization type of algorithm (Marsan and
Lengliné 2008;Veen and Schoenberg 2008). Recall that for a self-
exciting point process each event is either a background event
or an o�spring event (i.e., triggered by a previous event). This
classi�cation of events as background or o�spring is referred
to as the branching structure of the process. In most applica-
tions, the branching structure is an unobserved or latent vari-
able. For instance, it is not known whether an earthquake is an
aftershock or mainshock, or in the case of IkeNet e-mail traf-
�c, whether a message is a reply or nonreply. The EM algorithm
works iteratively by �rst estimating the branching structure of a
self-exciting point process (E-step), and then estimating model
parameters (M-step) bymaximizing the expected log-likelihood
function, given the current estimate of the branching structure.
Marsan proposed the EMalgorithmas away to estimate the con-
ditional intensity nonparametrically, using a histogram estima-
tor for the triggering function. Many authors have since applied
the EM algorithm to parametric Hawkes process models (Lewis
and Mohler 2011; Hegemann, Lewis, and Bertozzi 2012), yield-
ing closed-form estimators for model parameters.

For the remainder of this section, we will describe how to
use an EM-type procedure to estimate the parameters of model
(4). Models (3) and (7) can be estimated similarly. In particular,
model (3) is just a special case of model (4) with µ�t ) = 1/T ,
where T is the length of the observation window in hours.

For the IkeNet dataset, let sil be the time when the lth e-mail
was sent by o�cer i, rik be the time when the kth e-mail was
received by i, andNsend

i andNrec
i be the number ofmessages sent

and received by i.Wemay de�ne the true branching structure for
the e-mail network using the following random variables:

ψ i
l =






1 if sil is a nonreply message (background event)

0 otherwise, (8)

χ i
kl =

�
1 if sil is a reply to message rik, where s

i
l > rik

0 otherwise.
(9)

The log-likelihood function (Ogata 1978) for the conditional
intensity de�ned in model (4) is given by

li��i) = logLi��i) =

Nsend
i�

k=1

log
�
λi

�
sik

��
−

� T

0

λi�t )dt

=

Nsend
i�

k=1

log
�
λi

�
sik

��
−

�

νi � θi

Nrec
i�

k=1

[1 − e−ωi�T−rik )]



,

(10)

where�i = {νi, θi, ωi} is the parameter space for o�cer i. Recall

that
� T

0 νiµ�t )dt = νi since µ�t ) is a density function over

[0,T ]. To �nd the parameters �̂i that maximize (10) directly,
numerical optimization techniques must be used. However,
when incorporating information about the branching structure
we instead work with the complete data log-likelihood func-
tion, which ismore tractable formaximization, and decomposes
additively into a likelihood function for the background process
and a likelihood function for the triggering processes:

lci ��i) =

Nsend
i�

l=1

ψ i
l log

�
νiµ

�
sil
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−
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�
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l
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.

(11)

Since the true branching structure is unobserved, we estimate
model parameters by maximizing the expected complete data
log-likelihood, which is found by replacing ψ i

l and χ i
kl in (11)

with the estimated probabilities each event is either background
or o�spring:

Bi
l = probability sent message sil is background =

ν̂iµ̂
�
sil
�

λ̂i

�
sil
� ,

(12)
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Figure � Scatterplots showing the convergence of the EM-type algorithm, in terms of log-likelihood, for estimating the self-exciting models ((), (), and (), respectively).

Oi
kl = probability receiving message rik triggers sending message sil

=

�
ĝi�sil−rik)

λ̂i�sil )
sil > rik

0 otherwise.
(13)

Moreover, these probabilities can also be used to get a more
accurate estimate of the nonstationary background rate µ̂�t )
using weighted kernel density estimation ((5) and (6)). This
leads to the EM-type algorithm for estimating model (4):

Step 1. Initialize parameter estimates �ν̂
�0)
i , θ̂

�0)
i , ω̂

�0)
i ) for

each o�cer i. Initialize the background rate density

µ̂�0)�t ) using equal probability weights P�0)
k = 1/N

for each event k ∈ {1, . . . ,N} in (5) and (6). Set the
iteration indexm = 0.

Step 2. For each o�cer i, �nd Bi�m�1)
l and Oi�m�1)

kl using the
parameter estimates and background density from
iterationm.

Step 3. Estimate the background rate density, µ̂�m�1)�t ),
using the weighted KDE de�ned in (5) and (6), set-

ting P�m�1)
k = B�m�1)

k /
�N

k=1 B
�m�1)
k , where Bk is the

probability that e-mail k ∈ {1, . . . ,N} is nonreply
(background) at iteration m � 1. The bandwidth σ

is found using the estimate from Scott (1992).
Step 4. Estimate parameters by maximizing the expected

complete data log-likelihood using the probability
estimates from Step 2:

ν̂
�m�1)
i =

Nsend
i�

l=1

Bi�m�1)
l

θ̂
�m�1)
i =

�Nrec
i
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k
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Step 5. Update m ← m � 1 and repeat Steps 2–5 until con-

vergence when |
�

i[li��̂
�m�1)
i ) − li��̂

�m)
i )]| < � for

some small value � (in practice we set � = 10−3).
The estimators in Step 4 are found by setting the partial

derivates of the expected complete data log-likelihood (11), with
respect to each of the parameters, equal to zero. The convergence
criteria in Step 5 are in terms of the log-likelihood function in
(10). The convergence of this EM-type algorithm for the self-
exciting models is apparent in Figure 9.

Parameter estimates, standard errors, and maximum log-
likelihood values (10) for the Hawkes process models (3, 4, and
7) are given in Tables 1–3. Since estimated model (7) contains

21 reply rates θ̂i j, we instead present the average reply rate ˆ̄
θi =

�
j θ̂i j · N

rec
i j /Nrec

i , where Nrec
i j is the number of messages o�-

cer i received from j, for each o�cer in Table 3. Notice that the
parameter estimates for models (4) and (7) presented in these
tables are similar. This result is consistent with model (4) being
contained within model (7) (it is the case with θi j = θi for each
sender j and recipient i pair).

The standard errors in Tables 1–3 are found by simulating
each model 100 times (the Appendix) using the EM parameter
estimates from the observed data. For each simulated realization
of the network, the parameters are then reestimated, resulting
in 100 sets of reestimated parameters for each model. Standard
errors are computed by taking the root mean square deviation
between the parameter reestimates from the simulation and the
parameter estimate from the observed data.

By simulating the network repeatedly, one can also form 95�
con�dence envelopes for the nonstationary background rate
density µ̂�t ) (Figure 8). The gray error bound in this �gure is
formed by simulating �tted model (7) 100 times (the Appendix)

Table � Parameter estimates, standard errors, and maximum log-likelihood values
formodel (). Standard errors are computedby the rootmean square deviation from
 simulations of the estimated model.

i Nsend
i ν̂i/N

send
i θ̂i ω̂i li��̂i)

  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
  . (.) . (.) . (.) − .
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Table � Parameter estimates, standard errors, and maximum log-likelihood values

for model (). The column labeled ˆ̄θi gives the estimated average reply rate for each

officer ˆ̄θi =
�

j θ̂i j · N
rec
i j /Nrec

i . Standard errors are computed by the root mean

square deviation from  simulations of the estimated model.

i Nsend
i ν̂i/N

send
i

ˆ̄θi ω̂i li��̂i)

  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.
  . (.) . (.) . (.) −.

and reestimating the background rate for each simulated real-
ization of the e-mail network. Note that the background rate
from the observed network (solid black curve) falls reasonably
within the 95� con�dence bands, indicating that the estimated
background rate for the model is consistent with the estimate
from the observed data.

Inspection of Tables 1 and 2 reveals that model (4) outper-
formsmodel (3) since it has largermaximum log-likelihood val-
ues for every o�cer. This suggests that inclusion of the nonsta-
tionary background rate provides an overall better �t to the net-
work data. The maximum log-likelihood values for model (7)
(see Table 3) are greater thanmodel (4) for each o�cer; however,
due to the large number of parameters, model (7) does not out-
perform model (4) typically (as well as overall) by a statistically
signi�cant margin according to the Akaike information crite-
rion (AIC) of Akaike (1974). Diagnostic comparisons between
each model are discussed in greater detail in Section 4.4.

4. IkeNet Analysis

4.1. Characterizing Email Communication Behavior

The parameter estimates in Table 2 provide insight into the com-
munication habits of o�cers in the network. For instance, the
estimated proportion of e-mails sent by o�cer i that are not
replies (background events) is given by ν̂i/N

send
i . In other words,

ν̂i can be thought of as the estimated number of e-mail threads
o�cer i initiated over the 1 year observation period. For exam-
ple, according to the �tted model (4), approximately 68� of e-
mails sent by o�cer 15 are not replies and 48� of e-mails sent
by o�cer 18 are not replies. Over the entire network, ν̂i/N

send
i

ranges between 42� and 83�, and the estimated overall per-
centage of e-mails sent in the network that are not replies is

�22
i=1 ν̂i/N ≈ 55�, where N is the total number of observed

messages for the network.
The estimated mean number of replies o�cer i sends in

response to a typical e-mail received is given by θ̂i in Table 2.
For example, o�cer 18 sends approximately 59 replies per 100
e-mails received, while o�cer 15 sends approximately 46 replies
per 100 e-mails received.Note also that the estimated proportion
of sent e-mails that are not replies (ν̂i/N

send
i ) is higher for o�cer

15 than 18. This suggests that o�cer 15 has a higher tendency
to initiate e-mail conversations than o�cer 18, while o�cer 18
has a higher tendency to respond to e-mails than o�cer 15. Over

the entire network, θ̂i ranges between 16� and 68�, and the esti-
mated overall percentage of e-mails sent in the network that are

replies is
�22

i=1 θ̂i · N
rec
i /N ≈ 45�.

The speed at which o�cers send e-mails is governed by ω̂−1
i ,

which can be interpreted as the estimated mean time it takes
o�cer i to reply to an e-mail. By examining Table 2 we see that
o�cers 18 and 9 are estimated to take about 6 min to reply to
an e-mail. This is much faster than many of the other o�cers,
such as o�cer 13, who takes an estimated 21 min, on average, to
reply. Figure 5 shows that o�cers 9 and 18 communicate fre-
quently with each other, which may account for their similar
and speedy response times. The estimated mean response times
for o�cers in the network ranges from about 6 to 80 min, and
the estimated overall mean time it takes an o�cer to reply is�22

i=1 N
send
i · ω̂−1

i /N ≈ 0.307 hr or 18.4 min.

4.2. Inferring Network Leadership

An important question is what properties of an e-mail network
can best identify and rank the perceived leaders of that network.
As mentioned in Section 2, each o�cer in the IkeNet dataset
was asked in a survey to list up to �ve o�cers they considered
to be strong team leaders, and up to �ve o�cers they consid-
ered to be strong military leaders. The distinction made in the
survey was that a team leader is someone who is perceived as
con�dent leading a business or research project, while a mil-
itary leader is someone who is perceived as con�dent leading
soldiers in combat. Figures 10 and 11 are scatterplots of the total
number of e-mails sent versus the aggregate number of team and
military leadership votes, respectively. The correlations in these
scatterplots are weak tomoderate, and an inspection reveals that
sending a relatively large number of e-mails does not necessar-
ily indicate that an o�cer is a top leader. For instance, o�cer 15
stands out for having the most votes for both team and military
leadership, though this o�cer ranks below the 80th percentile in
terms of the total number of e-mails sent (o�cers 18, 13, 9, 22,
and 11 all sent more messages than o�cer 15). Moreover, o�cer
9 sent a large number of e-mails in the network, but ranks low in
terms of team and military leadership votes. Clearly, total num-
ber of e-mails sent is a poor predictor of one’s perceived leader-
ship status within the network.

Fortunately, the parameter estimates from the Hawkes pro-
cess models quantify other features of e-mail communication,
whichmay be predictive of network leadership. Two particularly
important features that we consider are the rate at which a user
initiates e-mail threads (background rate), and the responsive-
ness of a user to e-mails received (reply rate). We capture these
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Figure � Plot of the total number of e-mails sent versus the aggregate number
of votes each officer received for perceived team leadership (r = 0.52). Votes are
based on a survey which asked each officer to list up to five other officers in the
network that he or she considered to be a strong team leader.

Figure � Plot of the total number of e-mails sent versus the aggregate number
of votes each officer received for perceived military leadership (r = 0.13). Votes are
based on a survey which asked each officer to list up to five other officers in the
network that he or she considered to be a strong military leader.

features in a potential predictorY , which is de�ned for each o�-
cer i as the total number of other o�cers j for which o�cer i has

an estimated mean reply rate (θ̂i j) above threshold c1, and sent
an estimated number of nonreply e-mails �ν̂iN

send
i j /Nsend

i ) above
threshold c2. That is,

Yi�c1, c2) =
�

j

�

�
θ̂i j > c1, ν̂iN

send
i j /Nsend

i > c2

�
, (14)

where � denotes the indicator function, Nsend
i j is the number of

e-mails sent from o�cer i to j, and all �tted parameters are from
model (7). Intuitively, o�cers that initiate many e-mail threads
and are very responsive to e-mails received obtain a high value
for predictorY , and are therefore considered potential leaders.

For our analysis, we consider four sets of thresholds for the
predictor de�ned in (14), denoted by Y �k) for k = 1, . . . , 4.

Let A = {θ̂i j|i �= j} be the set of estimated reply rates from
o�cers i to j, B = {ν̂iN

send
i j /Nsend

i |i �= j} be the set containing

Table � Predictors of team leadership.

Predictor rp rs τ Estimated top four leaders

Nsend 0.52∗ 0.40· 0.29· 18, 13, 9, 22
Nrec 0.49∗ 0.39· 0.29· 13, 18, 9, 11

Y �1) 0.68∗∗ 0.66∗∗ 0.52∗∗ 15, 18, 13, 22

Y �2) 0.64∗∗ 0.50∗ 0.40∗ 13, 15, 18, 22

Y �3) 0.53∗ 0.60∗∗ 0.47∗∗ 13, 18, 9, 15

Y �4) 0.66∗∗ 0.45∗ 0.36∗ 13, 18, 22, 15

NOTE: The significance values testingwhether each correlation is different fromzero
are denoted by (·) at the . level, (*) at the . level, and (**) at the . level. In
the event of ties in Y the tiebreaker is the number of e-mails sent in determining
the top four leaders. The actual top four team leaders from the survey votes are
officers , , , and .

the estimates for the number of nonreply e-mails (background

events) sent from o�cers i to j, and θ̄ = 1
N

�
i

�
j N

rec
i j θ̂i j be

the estimated mean percentage of reply e-mails sent in the
entire network. For predictorY �1), threshold c1 = θ̄ = 0.45 and
threshold c2 = 4.79 is the median of set B. For predictor Y �2),
threshold c1 = θ̄ = 0.45 and threshold c2 = 9.92 is the mean
of set B. The thresholds �c1, c2) = �0.33, 4.79) selected for
Y �3) are the respective medians of sets A and B. The thresholds
�c1, c2) = �0.52, 9.91) selected for Y �4) are the respective third
quartiles of sets A and B. Of course, many other thresholds
are possible, and the selected thresholds are just simple, easily
computed candidates.

Tables 4 and 5 lists several predictors of network leadership
and the Pearson, Spearman, and Kendall correlations between
these predictors and the survey votes for team andmilitary lead-
ership. The Pearson correlation is between the predictor of inter-
est and the total number of team or military leadership votes
(Figures 10 and 11). The Spearman and Kendall correlations
compare the predicted rankingswith the rankings from the lead-
ership survey votes. A value of 1 for Kendall’s coe�cient indi-
cates that the rankings are perfectly concordant, 0 indicates that
the rankings are independent, and−1 indicates the rankings are
perfectly discordant (in reverse order). The last column in both
tables gives the top four leaders identi�ed by each predictor.

Tables 4 and 5 show that predictor Y , for the four selected
sets of thresholds, ismuchmore highly correlated with team and
military leadership votes than the total number of messages sent
(Nsend) or received (Nrec) by each o�cer. Predictor Y also does
a better job at identifying the top leaders than Nsend and Nrec.
For instance, Y �1), Y �2), and Y �4) all correctly identify the top
four team leaders (13, 15, 22, and 18). Moreover, o�cer 15, the
highest ranked o�cer in terms of team and military leadership

Table � Predictors of military leadership.

Predictor rp rs τ Estimated top four leaders

Nsend . . . 18, 13, 9, 22
Nrec . . . 13, 18, 9, 11

Y �1) 0.48∗ 0.44∗ 0.34∗ 15, 18, 13, 22

Y �2) 0.45∗ 0.45∗ 0.37∗ 13, 15, 18, 22

Y �3) 0.36· 0.41· 0.32∗ 13, 18, 9, 15

Y �4) 0.32 0.27 0.24 13, 18, 22, 15

NOTE: The significance values testingwhether each correlation is different fromzero
are denoted by (·) at the . level, (*) at the . level, and (**) at the . level. In
the event of ties in Y the tiebreaker is the number of e-mails sent in determining
the top four leaders. The actual top four military leaders from the survey votes are
officers , , , and .
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Figure � Pearson (rp), Spearman �rs), and Kendall �τ ) correlations between the predictor variables and the team (panel a) and military (panel b) leadership votes. Y �k)

for k = 1, . . . , 4 denotes predictorY �c1, c2) for the four sets of thresholds c1 and c2 discussed in Section .. Both panels show that predictorY is more strongly correlated

with the leadership votes than Nsend and Nrec .

votes, is identi�ed by predictorY as a top leader, whileNsend and
Nrec do not recover the importance of this o�cer.

The points in Figure 12 represent the Pearson (rp), Spear-
man �rs), and Kendall �τ ) correlations between the predictors
(Y , Nsend, and Nrec) and the leadership survey votes. Panel (a)
shows that predictor Y has higher correlations with the team
leadership votes than the naive predictors (Nsend and Nrec) for
the four sets of thresholds considered. Y �1) performs the best
overall at predicting and ranking team leaders; Y �3) also does
comparably well at ranking team leaders even though it has a
lower Pearson correlation. Panel (b) also shows that predictorY
has higher correlations with the military leadership votes than
Nsend and Nrec; this is true for all sets of thresholds considered,
withY �4) the only exception since it has approximately the same
Spearman correlation as Nsend. Y �1) and Y �2) perform the best
overall at predicting and ranking military leaders.

4.3. Sensitivity to Thresholds

The correlations between predictor Y �c1, c2) and the leader-
ship survey votes depend on the choice of thresholds c1 and c2.
Figure 12 shows that for very reasonable threshold selections
(i.e., means, medians, and third quartiles as discussed in Sec-
tion 4.2), predictorY performs much better at ranking and esti-
mating leadership scores than the naive predictors Nsend and
Nrec. Table 4 also shows thatY is generally able to identify the top
four teams leaders with slight variations in order. For all thresh-
old values considered in Tables 4 and 5,Y does a better job than
Nsend or Nrec at identifying the top leaders.

In Figure 13, we further assess the sensitivity of Y �c1, c2) to
the threshold values. Each panel shows the correlations (Pear-
son, Spearman, or Kendall, as indicated) between Y �c1, c2) and
the leadership votes as c1 varies continuously between 0 and
0.52, and c2 takes �xed values at the �rst quartile (1.8), median
(4.8), and third quartile (9.9) for the number of background
events (nonreply e-mails) sent between o�cers in the network.
The upper three panels give the correlations between Y and
the team leadership votes, and the lower three panels give the
correlations between Y and the military leadership votes. The
horizontal line in each panel is the respective correlation
between predictor Nsend and the leadership votes.

The correlations corresponding to predictor Y �c1, c2) typi-
cally fall above the horizontal line in each panel as the thresh-
olds vary; this indicates thatY �c1, c2) ismore strongly associated
with the leadership votes thanNsend for a wide variety of thresh-
old combinations. In the top three panels, threshold c2 = 4.8
(median) performs the best overall at ranking network o�cers,
as indicated by the relatively high Spearman and Kendall corre-
lations when this threshold value is chosen. In the bottom three
panels, there appears to be a peak when threshold c1 is approx-
imately 0.45, which is the estimated mean percentage of reply
e-mails sent in the entire network (θ̄). Conclusively, in all panels
it is apparent that for a wide variety of choices for thresholds we
obtain quantitatively similar results.

4.4. Model Comparison andDiagnostics

The maximized log-likelihoods for the network and corre-
sponding AIC values are provided in Table 6. The �rst row
gives these values for a stationary Poisson model of e-mail net-
work tra�c, where the rate at which each o�cer sends e-mails
is constant and given by λi�t ) = µi. This model only has 22
parameters (the constant rate for each o�cer). The other three
rows of this table are for the Hawkes process models ((3), (4),
and (7)) described in Section 3. The Hawkes process model
(3) �ts the data signi�cantly better than the stationary Poisson
model according to the AIC. Additionally, the maximum log-
likelihood value for the model with nonstationary background
rate (4) is higher than themodel with the stationary background
rate (3). This indicates that taking diurnal and weekly trends
into account provides an overall better �t to the network data.
While the increase in maximum log-likelihood is noteworthy, it
is not entirely justi�able to use the AIC to compare the models
that include the nonparametrically estimated background den-
sity µ̂�t ) (4 and 7) with the completely parametric model (3).
The Hawkes process model (7), which incorporates pairwise
interactions between o�cers, �ts the data slightly more closely
thanmodel (4) asmeasured by themaximum log-likelihood, but
scores worse in terms of AIC. This is because the AIC penal-
izes for the large number of parameters in (7). Although, due
to the overall sparsity in the IkeNet e-mail network (Figure 5),
about 15� of the estimated parameters in (7) are equal to zero.
Comparison of models (4) and (7) suggests that e-mail tra�c
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Figure � Sensitivity plots for the Spearman, Pearson, andKendall correlations betweenpredictorY �c1, c2) and the team leadership votes (upper threepanels) andmilitary
leadership votes (lower three panels) for different values of thresholds c1 and c2 . The lines in each plot give the correlations between Y �c1, c2) and the leadership votes
as c1 varies continuously between  and ., and c2 takes fixed values at the first quartile (.), median (.), and third quartile (.) for the number of background events

(nonreply e-mails) sent between officers in the network. The horizontal line in each panel is the respective correlation betweenNsend (total number of e-mails sent by each
officer) and the leadership survey votes. This plot shows that for a wide variety threshold values predictor Y �c1, c2) is more strongly correlated with the leadership votes

than the naive predictor Nsend.

is well modeled by few parameters, and adding in extra parame-
ters to capture the di�erences in reply rates between o�cer pairs
does not provide a signi�cantly better �t to the data. However,
the utility of model (7) to predict and rank network leaders was
shown in Section 4.2.

The simulation procedure described in the Appendix can be
used to evaluate how well the estimated Hawkes process mod-
els capture aspects of the observed data. For instance, one test
of predictive performance is to split the data into a training and
validation set and assess how well each model simulated many
times from the parameters estimated from the training set is
able to reproduce some characteristic of the validation set. For
this diagnostic, the selected training set is the �rst 11 months
(T = 7920 hr) of e-mail data, and the selected validation set is
the lastmonth (720 hr, betweenApril 13, 2011 andMay 12, 2011)
of e-mail data. Here, we choose the portion of all e-mails sent
attributed to each individual o�cer as our metric for the predic-
tive performance of each model on the validation set. We have
chosen to inspect each o�cer’s portion of all e-mails sent rather
than each o�cer’s raw sent e-mail count since the overall rate
of e-mail exchanges appears to be much higher during the �nal
month of our dataset (the validation set) than is typical of the
previousmonths, and ourmodel cannot account for this change.

This unusual spike in activity, occurring during the beginning of
May, can be seen clearly in the time series plot (Figure 3).

Using the �rst 11 months (T = 7920 hr) of e-mail data in
the training set, we estimate models (3), (4), and (7) with the
EM-type algorithm described in Section 3.3. To estimate the
nonstationary background rate density, µ̂�t ), in Step 2 of the
EM-type algorithm, we use the weighted kernel density estimate
in (5) and (6) evaluated over the e-mail events occurring in the
training set. For each self-excitingmodel, we use the parameters
estimated from the training data to simulate the IkeNet e-mail
network 100 times over a period of T = 720 hr (1 month). For
the simulation procedure for the nonstationary background
process (the Appendix, Algorithm A), the estimate µ̂�t ), from
the training set, is evaluated over a 720 hr period that starts and
ends on the same days as the validation set (only the start and
end days matter since µ̂�t ) is periodic).

In Figure 14, the 0.025 and 0.975 quartiles for the simulated
proportions of e-mails sent by each o�cer in the network under
each model are plotted as gray vertical lines. The observed pro-
portion of e-mails sent by each o�cer in the validation set is
also plotted in this �gure as black horizontal lines. Most of these
observed proportions are either containedwithin or fall near the
simulated intervals for each o�cer. Only o�cers 10, 13, and 22



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 575

Figure � Comparison of the simulated and observed proportion of e-mails sent by
each officer over a period of  month ( hr). The gray vertical lines are the point-
wise . and . quartiles for the proportions generated from  simulations
of the IkeNet e-mail network using the models estimated from the training set (first
 months of e-mail data). The black horizontal lines are the observed proportions
from the validation set.

deviate signi�cantly from the simulated outcomes. There also
does not appear to be any major di�erences between the predic-
tive performances of the consideredmodels. However, this is not
surprising since the nonstationary background rates in models
(4) and (7) only accounts for daily and weekly trends, and since
we are simulating over a period of 1 month there should not be
any major di�erences in the simulated number of messages for
thesemodels when comparedwithmodel (3) with the stationary

Table � Number of parameters (ρ), AIC, and maximum log-likelihood values for
the Poisson and Hawkes process models of the IkeNet e-mail network. The value KS
is the Kolmogorov–Smirnov test statistics comparing the transformed time to the
uniform distribution.

ρ l��̂) AIC KS

Stationary Poisson  −. . .
Hawkes model ()  −. . .
Hawkes model ()  −. . .
Hawkes model ()  −. . .

background term. Moreover, the similarity between the perfor-
mances ofmodels (4) and (7) in this diagnostic is consistent with
the log-likelihood analysis for these models.

Another goodness-of-�t diagnostic considered by Ogata
(1988) is the transformed time {τ i

k}, which may be de�ned for
each o�cer i as

τ i
k = �

�
sik

�
=

� sik

0

λi�t )dt. (15)

If themodel used in their construction is correct, then the trans-
formed times should form a Poisson process with rate 1 (Meyer
1971), and similarly the interevent times τ i

k − τ i
k−1 between the

transformed times should follow an exponential distribution;
hence Ui

k = 1 − exp{−�τ i
k − τ i

k−1)} should be uniformly dis-
tributed over [0, 1). Thus, as suggested, for example, in Ogata

Figure � ((a)–(d)) Plot ofUk�1 versusUk for the stationary Poisson process model and Hawkes process models ((), (), and ()) of e-mail activity on the network, respec-
tively.
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Table � Number of parameters (ρ), AIC, and maximum log-likelihood values for the
Poisson andHawkesprocessmodels of the Enrone-mail network. The valueKS is the
Kolmogorov–Smirnov test statistics comparing the transformed time to theuniform
distribution.

ρ l��̂) AIC KS

Stationary Poisson  −. . .
Hawkes model ()  −. . .
Hawkes model ()  −. . .
Hawkes model () , −. . .

(1988), if the main features of the data are well captured by the
estimatedmodel, a plot ofUi

k�1 versusU
i
k should look like a uni-

form scatter of points. These plots are presented in Figure 15
for the stationary Poisson process model and all Hawkes pro-
cess models ((3), (4), and (7)) of e-mail network tra�c consid-
ered in this article. A comparison of these plots reveals much
less clustering around the perimeter for the Hawkes process
models, indicating that while the Poisson model clearly fails to
account for the clustering in the data, this feature is noticeably
less pronounced for the self-excitingmodels. Furthermore, there
appears to be slightly less clustering in the plot formodel (4) than
the plot for model (3), and likewise when comparing models (7)
and (4). This claim is supported by the decreasing values of the
Kolmogorov–Smirnov test statistics in Table 6, which compare
the transformation {Uk} for each network model with the uni-
form distribution.

5. Comparative Analysis Using the Enron Email
Dataset

E-mail datasets are di�cult to �nd due to themany privacy con-
cerns involved when making such data publicly available. The
Enron e-mail corpus is one of the few large e-mail communi-
cation datasets readily available for public research. The corpus
was originally released in 2002 by the Federal Energy Regula-
tory Commission (FERC) during the scandal. William Cohen
(CMU) distributed a version of the original corpus containing
about 517,430 e-mails from 151 users on 3500 folders (Cohen
2009). Shetty and Adibi (USC) cleaned Cohen’s versions of the
dataset and organized the corpus in a MySQL database contain-
ing 252,759messages collected from 151 users (Shetty andAdibi
2004).

We consider the sender, recipient, and timestamp of each
message in a closed version of the Enron e-mail network of
Shetty and Adibi (2004) containing messages sent between the
151 users. Once duplicates and messages individuals sent to
themselves are removed, the corpus is reduced to 14,959 sent
messages and 24,705 receivedmessages. Approximately 27.7�of
e-mails sent in the closed network havemultiple recipients. Each
sent message is coded as a single sent message, regardless of the
number of recipients, and in this way the number of receiving
and sending messages are allowed to vary for each user. When
de�ning Nsend

i and
�

j N
send
i j for the Enron dataset, a multicast

e-mail sent by i to 10 recipients, for example, would contribute
1 to Nsend

i and 10 to
�

j N
send
i j .

Figure 16 is a time series plot of the number of e-mails sent
each month in the closed Enron e-mail network over the 3-year
period betweenMay 1999 and June 2002. There is a pronounced
peak in activity between the dates when Je�rey Skilling abruptly

resigned as CEO (August 2001) and Enron �led for bankruptcy
(December 2001). E-mail usage steadily declined to a zero
level during the months after January 2002. The scatterplot in
Figure 17 (right panel) shows that there is a strong association
(r ≈ 0.72) between the natural logarithms of the number of
messages sent and received by each user in the closed Enron
network. This result is similar to the IkeNet dataset (left panel),
which shows a very high correlation (r ≈ 0.95) between the
raw number of incoming and outgoing messages. We apply the
logarithmic transform to the Enron data since it is more skewed
than IkeNet.

We �t the Hawkes process models ((3), (4), and (7)) to the
Enron data using the EM-type algorithm described in Sec-
tion 3.3. The maximum log-likelihood and AIC values for the
network are provided in Table 7. The results presented in this
table are quite similar to IkeNet, indicating that perhaps our
models generalize well to other larger e-mail networks. The self-
exciting model (3) �ts the Enron network data signi�cantly bet-
ter than the stationary Poisson model according to the AIC.
Additionally, there is a substantial increase in themaximum log-
likelihood values for the network with the inclusion of the non-
stationary background rate in model (4). Hence, it appears that
the modeling of diurnal and weekly periodicities in e-mail net-
work activity provides a better �t to the Enron data than the
stationary background rate in (3). Due to the large number of
parameters, the AIC for model (7) is much larger than model
(4). However, like IkeNet, the Enron e-mail network is sparse
in the number of messages sent between pairs of individuals. In
fact, approximately 94� of the estimated parameters for model
(7) of the Enron dataset are equal to zero. Enron e-mail tra�c
is well captured by a few parameters for each node in the net-
work, and incorporating parameters to model pairwise connec-
tions between users does not signi�cantly improve the overall �t
to the data. The values of the Kolmogorov–Smirnov test statistic
(Section 4.4) indicate the Hawkes process models for the Enron
network account for the clustering in the times when e-mails are
sent signi�cantly better than the stationary Poisson model.

Table 8 displays the mean percentage of reply and nonreply
messages estimated from the self-exciting models (3, 4, and 7)
of the Enron and IkeNet e-mail networks. These percentages are
quite similar for both networks:model (3) estimates that approx-
imately half of the e-mails sent in each network are nonreplies,
and this percentage increases with the inclusion of the non-
stationary background rate in models (4) and (7). Table 8 also
reveals that the estimated reply times are much higher for the
Enron dataset than the IkeNet dataset. For instance, according
to estimated model (4), the middle 50� of estimated reply times
(ω̂i) are between 13.2 and 28.8 min for the IkeNet e-mail net-
work, and between 1.63 and 60.52 hr for the Enron e-mail net-
work. One explanation is that IkeNet o�cers are using mobile
devices to send e-mails, and are thus able to reply to messages
quickly, within an hour, while individuals in Enron are using
personal desktops, and therefore take much longer to reply.

5.1. Describing and Inferring Enron Leadership Roles

The prediction of the leadership and hierarchy underlying the
Enron corporation from the e-mail corpus data is an impor-
tant problem, and there are various techniques in the literature
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Figure � Time series plot of number of e-mails sent each month between May
 and June  in the Enron dataset.

Table� Meanpercentnonreplymessages (
�

i ν̂i/N),meanpercent replymessages

(
�

i θ̂i · N
rec
i /N), average reply time (

�
i N

send
i ω̂−1

i /N), and first and third quartiles
for reply times estimated from the Hawkes process models of the Enron and IkeNet
e-mail networks.

Dataset Model � Nonreply � Reply Mean reply time (hrs)

IkeNet Hawkes model () .� .� . (., .)
Hawkes model () .� .� . (., .)
Hawkes model () .� .� . (., .)

Enron Hawkes model () � � . (., .)
Hawkes model () .� .� . (., .)
Hawkes model () .� .� . (., .)

proposed for this task. Shetty and Adibi (2005) used a graph
entropy model to �nd prominent and in�uential individuals in
the Enron e-mail dataset. Nodes (e-mail users) that cause the
greatest change in graph entropy for the network once removed
are ranked highest and regarded as most important. Creamer
et al. (2009) used an SNA (social network analysis) approach to
extracting social hierarchy information from the Enron dataset.
These authors rank and group e-mail users according to a social
score, which is de�ned as a weighted sum of user-speci�c statis-
tics such as number of messages, number of cliques, degree
and betweenness centrality. McCallum, Wang, and Corrada-
Emmanuel (2007) proposed the Author-Recipient-Topic model
that learns topic distributions conditioned on the senders and
receivers of e-mail messages; the topic distributions estimated
from the Enron e-mail corpus are used to predict the roles of
individuals in the network.

Table� Meannumber ofmessages sent and receivedbyusers at different positions
in Enron’s corporate hierarchy.

Position n Nsend Nrec Total

CEO  . (.) . (.) . (.)
President   (.) . (.) . (.)
Vice President  . (.)  (.) . (.)
Managing Director  . (.) . (.) . (.)
Director  . (.) . (.) . (.)
Manager   (.) . (.) . (.)
Lawyer  . () . (.)  (.)
Trader  . () . (.) . (.)
Employee  . (.)  (.) . (.)

NOTE: Thevalues fornare thenumberof individuals belonging toeachoccupational
category. The values in the other columns are the means of the specified variables
evaluatedover theusers belonging to eachposition,with corresponding standard
deviations given in parenthesis.

For the actual positions of the users in the Enron e-mail net-
work, we draw from the classi�cation of Shetty and Adibi (2004)
of workers into nine categories: CEO, President, Vice Presi-
dent, Managing Director, Director, Manager, Lawyer, Trader,
and Employee. The position Employee refers to individuals
that serve nonmanagerial roles such as associates, analysts, and
administrative assistants. To �ll in the position data missing in
Shetty and Adibi’s classi�cation, we cross-referenced Creamer
et al. (2009) and the actual legal documents released during
the Enron scandal (Congress 2003). Using all three sources, we
determined the positions of 150 of the 151 users in the Enron
e-mail network.

Table 9 presents mean counts and standard deviations for
the number of messages sent and received by individuals within
each of the nine occupational categories for Enron’s corporate
hierarchy. Inspection of this table reveals that the Enron CEOs
have the lowest average number of messages sent and received
when compared to all other job categories. Lawyers and Vice
Presidents stand out for sending and receiving the highest mean
number of e-mails. However, the standard deviations indicate
that there is much variability between individuals within each
group. Hence, the discrimination of user roles within the Enron
corporate hierarchy based purely on the counts for the number
of messages sent and received would be di�cult; this motivates
looking at additional features of e-mail users’ communication
behaviors supplied by the parameter estimates from the Hawkes
process models.

Figure � Left panel: Scatterplot of the total number of e-mails received (x) versus the total number of e-mails sent (y) by each officer in the IkeNet dataset. The scatterplot
and regression line show a strong association between the raw number of e-mails sent and received (r = 0.95). Right panel: Scatterplot of the natural logarithm of total
number of e-mails received versus the natural logarithm of the total number of e-mails sent by each user in the Enron dataset. The scatterplot and regression line show a
strong association between the natural logarithm of number of e-mails sent and received (r = 0.72).
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Table � Features from the estimatedHawkes processmodels for describing e-mail
communication behaviors at different positions in Enron’s corporate hierarchy.

Position n ν̂/Nsend θ̂ Y �1) Y �2) Y �3)

CEO  . (.) . (.) . () . (.)  (.)
President  . (.) . (.) . (.) . (.) . (.)
Vice President  . (.) . (.) . (.) . (.) . ()
Managing Director  . (.) . (.) . (.) . (.) . ()
Director  . (.) . (.) . (.) . (.) . (.)
Manager  . (.) . (.)  (.)  (.) . (.)
Lawyer  . (.) . (.) . (.)  (.) . ()
Trader  . (.) . (.) . (.) . (.) . (.)
Employee  . (.) . (.) . (.) . (.) . (.)

NOTE: The values in the columns are the estimated means of the specified variables
evaluated over the individuals belonging to each position, and the standard devi-
ations of the estimates for each variable are given in parenthesis. The table values

for ν̂/Nsend and θ̂ are calculated as a weighted average and weighted standard
deviation, with weights proportional to the number of e-mails sent and received
by each individual, respectively. Mean values and standard deviations for Y �1),
Y �2), andY �3) are not weighted. The thresholds forY �1) ,Y �2), andY �3) are defined
similarly for the Enron and IkeNet datasets (Section .).

Table 10 presents features of e-mail communication esti-
mated from self-exciting models (4) and (7), averaged over the
users belonging to each of the nine occupational categories of
Enron’s corporate hierarchy. The features considered in this table
are the estimated mean proportion of sent e-mails that are not

replies (ν̂/Nsend), the estimatedmean reply rate (θ̂), and the pre-
dictorY (Equation (14)). Three sets of thresholds are considered
forY �c1, c2), denoted byY �1),Y �2), andY �3), which are de�ned
similarly as the threshold selections for the IkeNet dataset (Sec-
tion 4.2). (Due to the overall sparsity of the Enron e-mail net-
work, the median and third quartiles for the set of estimated
reply rates and set containing the number of background events
sent between o�cers are zero. ThusY �3) = Y �4) since both have
trivial thresholds c1 = c2 = 0, and we only consider Y �3) in the
subsequent analysis of Enron.)

The features considered in Table 10 characterize general
communication behaviors for each occupational position. For
example, an estimated 84� of e-mails sent by the four Enron
CEOs are not replies to e-mails they received from individuals in
the network. Moreover, the CEOs have an estimated mean reply
rate of 0.1 and thus only send an average of 10 reply messages
per 100 messages received. When compared to all other occu-
pational categories, CEOs send the highest estimated percent-
age of e-mails that are not replies and have the lowest estimated
reply rate. Hence, an interesting feature of CEOs revealed by the
self-exciting models is that, on average, they are not responsive
to e-mails received and tend to initiate e-mail conversations or
threads. This is in contrast to the 14 EnronManagers, who have
the highest estimated mean reply rate (0.34) and sent the lowest
estimatedmean proportion of e-mails that are not replies (0.26).
Individuals with the job title Employee fall in betweenCEOs and
Managers in terms of these features. In general, it appears that
as we travel down the Enron hierarchy, the average reply rate
increases and the average proportion of sent e-mails that are not
replies decreases. The major exception to this are the Traders
that are more similar to CEOs than Employees in terms of these
features.

Predictor Y �c1, c2), which performed well for identifying
IkeNet leaders, has large average values for Presidents and Vice
Presidents in the Enron network. The standard deviations for
values of Y are also large, although this is not surprising since

there can be wide disparities in use of e-mails within groups (as
seen in Table 9 as well). Lawyers also seem to be a class of their
own, having large values for Y relative to other occupational
categories.

One way to infer the leadership status of users in the Enron
network is to consider simple binary classi�cation rules. For
instance, CEOs send far fewer e-mails, on average, than other
Enron users (Table 9). Hence, to infer CEO status we can con-
sider a cuto� value for Nsend and classify all users that sent a
total number of e-mails below the cuto� as CEOs, and non-
CEOs otherwise. For any particular cuto� value, we can com-
pute the true positive rate (the percentage of CEOs correctly
classi�ed as CEOs) and the false positive rate (the percentage
of non-CEOs that are incorrectly classi�ed as CEOs). Similar
binary classi�cation rules can be constructed using the other
predictors (Nrec, Y �1), Y �2), Y �3)) as well. Figure 18 panel (a)
shows the receiver operating characteristic (ROC) curves con-
structed by plotting the true positive versus false positive rates
for all possible cuto� values for each predictor variable for classi-
fying users as CEOs or non-CEOs. The other panels in Figure 18
show the ROC curves generated from similar binary classi�ca-
tion rules for predicting whether or not each user is a Vice Pres-
ident/President (panel (b)) and Director/Managing Director
(panel (c)).

The ROC curves corresponding to the binary classi�cation
of CEO status (panel a) indicate that the naive predictors (Nsend

and Nrec) perform generally as well as Y . Thus, the additional
features of e-mail communication estimated from the Hawkes
process models do not contributemuch to inferring CEO status,
beyond what is already provided for by simple messages count
totals. The large amount of variability between the true positive
rates corresponding to each predictor is due to the small sample
size of four CEOs in the Enron network.

The ROC curves corresponding to the binary classi�cation
of President/Vice President status (panel b) indicate that pre-
dictors Y �1) and Y �3) perform better than the naive predictors.
For example, for a �xed false positive rate of 0.05, the true pos-
itive rates for each predictor are 0.07 for Nsend, 0.1 for Nrec,
0.19 for Y �1), 0.09 for Y �2), and 0.21 for Y �3). Hence, there is
noticeable improvement in predictive performance when using
Y �c1, c2) to distinguish Presidents/Vice Presidents from the rest
of the Enron users. However, this improvement only holds for
the thresholds selected for Y �1) and Y �3), while Y �2) performs
only as well as the naive predictors.

The ROC curves corresponding to the binary classi�cation of
Director/Managing Director status (panel c) are all very close to
the line y = x (true positive rate equal to false positive rate) for
false positive rates less than 0.3. Therefore, the binary classi�ers
constructed from each predictor variable are not doing any bet-
ter than random chance at these values. For larger false positive
rates (greater than 0.3) Y �1) and Y �2) appear to perform better
than the other predictor variables (Nsend, Nrec,Y �3)) at discrim-
inating Director/Managing Director status.

While binary classi�cation rules are a simple way to infer
Enron leadership, it is somewhat unclear from the ROC plots
which predictors perform the best, and whether there are
any substantial di�erences in the performance of the various
predictors. To better evaluate the proposed predictors of
leadership, particularly for the Enron network, we consider a
modeling approach in the next section.
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Figure � ROC curves corresponding to the binary classification of different Enron leadership roles. For each predictor of leadership (Nsend ,Nrec ,Y ) a cut-off value is chosen
to classify each user as either a leader or nonleader. The ROC curves are constructed by considering all possible cut-off values for each predictor variable and plotting the
corresponding true positive and false positive rates. The ROC curves in panels (a), (b), and (c) are for the classification rules for predicting whether or not each user is a CEO,
President/Vice President, and Director/Managing Director, respectively.

5.2. RegressionModels for Predicting Leadership

In this section, we consider regression models for predicting
IkeNet and Enron leadership status using predictors derived
solely from the e-mail log data (sender, recipient, and times-
tamp) for each network. The response variables of interest are
the IkeNet team and military survey leadership rankings, and
the Enron leadership roles coded as binary variables indicating
CEO, President/Vice President, and Director/Managing Direc-
tor status. For example, the binary response variable for CEO is
coded as 1 if the employee is a CEO, and 0 otherwise. Logistic
regression is used to predict the Enron leadership roles, and
standard least-squares regression is used to predict the IkeNet
leadership survey rankings.

A set of �ve user-speci�c predictor variables are used to build
the leadership models: Nsend, Nrec, Y , and two additional pre-
dictors named R and I, which incorporate features from the �t-
ted Hawkes process models but are simpler than Y and do not
involve interactions. We de�ne predictors R and I for each user
i as

Ri�c1) =
�

j

�

�
θ̂i j > c1

�
,

Ii�c2) =
�

j

�

�
ν̂iN

send
i j /Nsend

i > c2

�

for some choice of thresholds c1 and c2. For predictors R�c1),
I�c2), and Y �c1, c2), we consider the same types of thresholds
discussed in Section 4.2. Namely, the mean, median, and third
quartile of the estimated reply rates and estimated number of
nonreply e-mails (background events) between pairs of users
in each network. A motivation for considering these additional
predictors is that perhaps in social networks with hierarchies as
complex as Enron certain leadership roles are better quanti�ed
by either the responsiveness of the user to e-mails (as measured
by R) or the thread initiation rate (as measured by I), and not a
combined measure as quanti�ed by Y . Also, these simpler pre-
dictors may be useful when considering multivariate models for
leadership.

Figure 19 shows the AIC scores for simple and multiple
regression models of IkeNet team and military leadership rank-
ings, �t to all combinations of the �ve predictor variables Nsend,
Nrec, R, I, and Y . For example, the AIC scores for the simple
regression models of team leadership �t to Nsend and Nrec are
plotted in the �rst two rows of Figure 19. The three AIC scores
for predictor R (third row) correspond to three di�erent sim-
ple regression models for team leadership �t to R�c1) using the
three threshold c1 considerations. Similarly, the simple regres-
sion models �t to I and Y also have several AIC scores that
correspond to di�erent threshold selections. The sixth row of
Figure 19 shows the AIC score for the bivariate regressionmodel
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Figure � AIC scores for regression models for predicting IkeNet team and military survey leadership rankings. Considered are all combinations of predictorsNsend ,Nrec , R,
�, andY . Thedifferent thresholdsdiscussed in Section. areused tobuild themodelswithpredictorsR, �, andY . For example, the fourpoints in the row for predictorY are the
AIC scores for four simple regression models using four different sets of thresholds. The last three rows show the distribution of AIC scores for multiple regression models
built with all combinations of three, four, and five predictors. The triangles correspond to regression models constructed with only basic descriptive statistic predictors
(Nsend andNrec), and the vertical line indicates the best model fit to the descriptive statistic predictors. The circles correspond to regression models with at least one fitted
Hawkes process predictor (R, �, and Y ). Note, only circles are used in the last three rows since all models with three or more predictors are built with at least one fitted
Hawkes process predictor.

�t to Nsend and Nrec. The other bivariate models involve pre-
dictors R, I, and Y with di�erent thresholds combinations. For
example, there are six bivariate models �t to predictors R�c1)
and I�c2) (row 13) using three threshold values c1 for R and two
threshold values c2 for I. The last three rows of Figure 19 show
the distribution of AIC scores for multiple regression models �t
to all combinations of three, four, and �ve predictors.

The regression models for IkeNet leadership (Figure 19),
which incorporate features from the �tted Hawkes process
models (plotted as circles) generally perform better, in terms of
AIC, than the models with only the basic descriptive statistics
Nsend and Nrec (plotted as triangles). The univariate models
with predictors R, I, and Y perform relatively well and have
the lowest AIC scores among all models for certain thresholds;
this indicates that the descriptive statistics Nsend and Nrec o�er
little additional information beyond these predictors. Moreover,
many of the multivariate models also show substantial improve-
ment over the basic descriptive statistic models in terms of AIC.
For instance, the bivariate models for military leadership with
predictors R, I, and Y (rows 7–15) consistently perform better
than the best-�tting descriptive statistic model Nsend. The same
relationship also holds true for team leadership, with the only

exception being the bivariate models with Y,Nsend (row 11)
and Y,Nrec (row 12), which perform nearly as well as Nsend for
two thresholds selections, and substantially better for the other
two thresholds. The regression models with more than three
predictors often do not perform as well as the univariate or
bivariate models. The model with the highest AIC score has
all �ve predictors for team leadership and four predictors (R,
Y , Nsend, Nrec) for military leadership. This is perhaps due to
collinearity since the AIC penalizes for adding in redundant
predictors.

The AIC scores for the logistic regression models of Enron
leadership roles are plotted in Figure 20. All predictors are log-
transformed due to the overall sparsity of the Enron e-mail
dataset. For CEO status, the bivariate logistic models with pre-
dictors I,Nsend (row 9); I,Nrec (row 10); and I,Y (row 15) per-
form better than the best-�tting descriptive statistic model Nrec

for some threshold selections. Some multivariate models for
CEO status with three or more predictors have the lowest AIC
scores, however, the performance of these models appears sen-
sitive to threshold selection. For instance, the model with the
highest AIC has all �ve predictors. Since there are only four
CEOs in the Enron social network (out of 151 employees), it is
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Figure � AIC scores for logistic regression models for predicting Enron leadership roles. Considered are all combinations of log-transformed predictors Nsend, Nrec , R,
�, and Y . The different thresholds discussed in Section . are used to build the models with predictors R, �, and Y . The triangles correspond to regression models con-
structed with only basic descriptive statistic predictors (Nsend andNrec), while the circles correspond to regression models with at least one fitted Hawkes process predictor
(R, �, andY ).

di�cult to train any classi�er for CEO status due to the small
and unbalanced sample.

The logistic regression models for President/Vice President
status with predictorsR, I, andY generally perform substantially
better than the basic descriptive statistic models with Nsend and
Nrec in terms of AIC. Moreover, the univariate and bivariate
models with predictor R (rows 3,7,8,13,14) consistently outper-
form the descriptive statistic models. Since the coe�cients for R
in thesemodels are always positive and signi�cant, this indicates
that responsiveness is a strong predictor of EnronPresident/Vice
President status. The model with the highest AIC has univariate
predictor I�c2)with c2 set to themean thread initiation rate over
all o�cer pairs. This indicates that thread initiation is not an
important feature for the prediction of President/Vice President
status.

The univariate logistic regression models for Direc-
tor/Managing Director status generally perform the best in
terms of AIC. The univariate model with predictor Y has a
lower AIC score than the best �t descriptive statistics model
Nsend for most threshold selections, and appears to be the
best classi�er overall. The model with the highest AIC score
has all �ve predictors, and this is perhaps due to collinearity.
Since Director/Managing Director status is further down the
Enron hierarchy than President/Vice President status it is
not surprising that there is less substantial improvement in
modeling when considering predictors R, I, and Y , as Direc-
tors/ManagingDirectors probably interactwith employeesmore
directly.

6. Discussion

Self-exciting point process models for e-mail networks clearly
outperform traditional stationary Poisson models for both the
IkeNet and Enron datasets considered here. These Hawkes
process models, which appear to properly account for the
clustering in the times when e-mails are sent and the overall
branching structure of e-mail communication, are improved
by accounting for diurnal and weekly rhythms in e-mail tra�c
in the background rate component. The estimated parameters

of these models, such as θ̂ and ν̂, are easily interpretable and
characterize important properties of e-mail communication,
such as an individual’s tendency to reply to e-mails and initiate
new e-mail threads.

A network leader may possess more qualities than simply
sending and receiving many messages. One attribute of a leader
may be his or her responsiveness tomessages received from oth-
ers in the network. Furthermore, a leader may initiate many e-
mail conversations, and not rely on others to start projects and
make decisions. The parameters of the Hawkes process model
(7) quanti�ed these additional features, which we attempted to
combine into a measure Y �c1, c2) (Equation (14)) for inferring
network leadership. The results of our analysis of the IkeNet
social network reveal that predictor Y is much more strongly
correlated with the leadership survey votes and rankings than
the naive predictors Nsend (total number of e-mails sent) and
Nrec (total number of e-mails received) for several reasonable
threshold considerations. Moreover, an analysis of the sensitiv-
ity of Y �c1, c2) to thresholds c1 and c2 demonstrates that we
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get quantitatively similar results for a wide variety of threshold
selections as well (Figure 13).

For the Enron dataset, we observed that CEOs, the high-
est ranked individuals within the network, send and receive
far fewer e-mails, on average, than users in other occupational
categories within the Enron hierarchy. Moreover, the estimated
Hawkes process parameters also reveal that CEOs have a much
higher tendency to initiate e-mail conversations (high back-
ground rate) than send replies (low reply rate). One possible
explanation is that CEOs may be older than most other users
in Enron and rely more on forms of communication besides
e-mail (e.g., telephone, verbal, mail), or that many of the mes-
sages they received were low priority due to their high status
within the organization. Enron Presidents and Vice Presidents
are much more active within the e-mail network than CEOs
since they send and receive a high volume of messages. More-
over, these users generally have relatively high values for pre-
dictor Y , indicating that the features of e-mail communication
quanti�ed by the �tted Hawkes process models help distinguish
Presidents/Vice Presidents from other users in the Enron social
network. Note that Enron ismerely one company, and a troubled
one at that, so we hesitate to generalize our results to communi-
cation within other corporations, and further study is needed to
verify if our �ndings apply to other companies as well.

Simple and multivariate regression models for IkeNet and
Enron leadership were considered to evaluate and compare
the performance of the �tted Hawkes process predictors (R,
I, and Y ) and the basic descriptive statistics (Nsend and Nrec).
In terms of AIC scores, the regression models with the �tted
Hawkes process predictors generally perform better than the
regression models with only descriptive statistic predictors for
IkeNet team andmilitary leadership survey rankings and Enron
President/Vice President status. For Enron CEO status, there is
a slight improvement in AIC for some multivariate models that
incorporate the �tted Hawkes process predictors; although, it
is di�cult to say whether this improvement is meaningful since
only 4 of the 151 Enron users are CEOs. The univariate logistic
model with predictor Y is the best overall classi�er for Enron
Director/Managing Director status, in terms of AIC. Although,
the �ttedHawkes process predictors more substantially improve
the logistic models for Enron President/Vice President status
than Director/Managing Director status. One possible explana-
tion is that Directors/Managing Directors are further down the
Enron hierarchy, and probably interact with the employees they
supervise more directly.

A main di�erence between the IkeNet and Enron networks
is that the IkeNet social network is relatively �at (all o�cers in
the network have the same military rank and are enrolled in
the same academic program at West Point), while Enron has a
complex leadership hierarchy that spans across multiple depart-
ments and positions. There is also much variability in e-mail
usage and behavior between individuals with roughly the same
role and position in the Enron social network. Hence, it is a
more straightforward process to identify and rank leaderswithin
the IkeNet social network than to infer Enron leadership roles
using various features of e-mail communication estimated from
sender, recipient, and timestamp �elds of e-mail logs.

Another important distinction between the IkeNet and
Enron datasets is that leadership ground-truth for IkeNet is in

the form of counts and rankings from the aggregated survey
votes, while Enron leadership roles are binary. Therefore, the
prediction problems and corresponding evaluations are slightly
di�erent. More examples on networks with these types of lead-
ership and communication data would be useful in the future
to further elucidate how and when the proposed methods o�ers
advantages for inferring leadership.

One future direction for this research is to consider di�erent
types of point process models to better account for the observed
clustering in e-mail tra�c. For instance, a completely nonpara-
metric self-excitingmodel, as described inMarsan and Lengliné
(2008), would allow for more �exibility in estimating the back-
ground and triggering intensities. However, suchmodels require
more computational e�ort and are less easily interpretable than
the exponential forms considered in this article. Also of interest
are other types of parametric point process models, besides the
Hawkes process, such as the Cox multiplicative intensity model
considered in Perry and Wolfe (2013), which can be used to
model dyadic and triadic e�ects, and homophily in e-mail net-
work activity. Another possibility for future work is using the
subject lines of e-mails to verify how well the latent branching
structure of discussion chains are detected with the EM-type
algorithm. Finally, beyond looking at the temporal statistics and
a point process analysis of e-mail communication networks, one
may also consider using techniques from social network analysis
and machine learning to help build predictors of network lead-
ership using the content of e-mails or texts. Ultimately, through
continuing with such research, we hope to improve methods for
inferring the leadership and hierarchy of criminal or terrorist
organizations from communication patterns.

Appendix: Simulation

In this appendix, we describe a procedure for simulating IkeNet e-

mail network activity using the estimated Hawkes process models.

We start by simulating the background events, or nonreply e-mails,

sent by each o�cer i over [0,T ]. For models (4) and (7), this can

be done using the method of Poisson thinning (Lewis and Shedler

1979) described in the following algorithm:

Algorithm A

Step 1. Let µ∗ be the maximum of µ̂�t ) over [0,T ].

Step 2. Draw N∗
b from Pois��̂iµ

∗T ) (this is an upper bound on

the number of background or nonreply e-mails for net-

work member i).

Step 3. Draw an iid sample {Zl : l = 1, . . . ,N∗
b } from Unif(0,1)

and set sil = T · Zl .

Step 4. For each event l = 1, . . . ,N∗
b at time sil , retain that event

within our simulated background set with probabil-

ity pl = µ̂�sil )/µ
∗, otherwise remove it from our back-

ground set.

Step 5. Let Nsend
i �0) denote the number of events selected in

step 4 and Gsend
i �0) = {sik : k = 1, . . . ,Nsend

i �0)} be the

set of event times selected in step 4, which we will refer

to as generation 0.

Step 6. Choose receivers for the events in Gsend
i �0) by draw-

ing a sample of size Nsend
i �0) with replacement from

the set { j : j ∈ {1, . . . , 22}, j �= i} with corresponding

weights {Nsend
i j : j ∈ {1, . . . , 22}, j �= i }, where Nsend

i j is

the observed number messages sent from i to j.
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To generate all the nonreply e-mails sent in the entire net-

work Algorithm A is repeated for each o�cer i = 1, . . . , 22. To

simulate the background process (nonreply e-mail send times) for

model (3), we simply simulate a stationary Poisson process with rate

µ̂i for each o�cer, and the receivers of e-mails are selected the same

way as in Algorithm A.

After laying down the background events (nonreply

e-mails), we simulate the reply e-mails. Let Grec
i �� ) = {rik : k =

1, . . . ,Nrec
i �� )} be the set of times when i received e-mails during

generation � and Nrec
i �� ) be the number of simulated messages i

received during generation � . Each message rik ∈ Grec
i �� ) received

by o�cer i at generation � triggers replymessages on �rik,T ] accord-

ing to the nonstationary Poisson process ĝi�t − rik) = θ̂iω̂ie
−ω̂i�t−rik ).

To generate these reply times for each o�cer i, usingmodels (3) and

(4), we apply the following algorithm (Lewis and Shedler 1979):

Algorithm B

Step 1. Set k = 1 and η = 0.

Step 2. Draw n���1)
k from Pois�θ̂i), this is the number of reply

messages i sends in response to receiving message rik ∈

Grec
i �� ) in the previous generation � .

Step 3. If n���1)
k = 0, there are no replies and go to step (5),

otherwise draw an iid sample {Zl : l = η � 1, . . . , η �

n���1)
k } from Unif(0,1).

Step 4. The reply times {sil : l = η � 1, . . . , η � n���1)
k } for

message rik ∈ Grec
i �� ) are given by

Zl =
1

θ̂i

� sil

ri
k

ĝi
�
t − rik

�
dt ⇒ sil =

ln�1 − Zl )

−ω̂i

� rik.

Step 5. Update η ← η � n���1)
k and k ← k � 1.

Step 6. Repeat steps (2)–(5) until k = Nrec
i �� ) � 1.

Step 7. Let Nsend
i �� � 1) =

�Nrec
i �� )

k=1 n���1)
k denote the number

of simulated e-mails sent by o�cer i in generation � �

1 and Gsend
i �� � 1) = {sil : l = 1, . . . ,Nsend

i �� � 1)} be

the corresponding set of times when o�cer i replies to

messages sent during the previous generation � .

Step 8. Choose receivers for the events inGsend
i �� � 1) by draw-

ing a sample of sizeNsend
i �� � 1)with replacement from

the set { j : j ∈ {1, . . . , 22}, j �= i} with corresponding

weights {Nsend
i j : j ∈ {1, . . . , 22}, j �= i }, where Nsend

i j is

the observed number messages sent from i to j.

Algorithm B is repeated for each o�cer i = 1, . . . , 22 to gen-

erate all reply e-mails at generation � . Algorithm B is applied to

each generation � ≥ 1 until we reach a generation �
∗ such that

Nsend
i ��∗) = 0 for all o�cers i. The procedure for simulating reply

e-mails for model (7) is similar to Algorithm B, essentially we are

substituting r
i j

k and θ̂i j in for rik and θ̂i. In other words, under esti-

mated model (7) the number of replies generated for each e-mail

received by i depends on the sender j.

SupplementaryMaterials

This supplement contains the R code (R Core Team 2015) for simulating
the IkeNet e-mail network from the estimated Hawkes process models with
the stationary background rate (3), nonstationary background rate (4), and
pairwise interactions (7).

Funding

This research is supported by ARO MURI grant W911NF-11-1-0332,
AFOSR-MURI grant FA9550-10-1-0569, NSF grants DMS-1045536 and
DMS-0968309, and ONR grant N000141210838.

References

Akaike, H. (1974), “A New Look at the Statistical Model Identi�cation,”
IEEE Transactions on Automatic Control, 19, 716–723. [571]

Balderama, E., Schoenberg, F. P., Murray, E., and Rundel, P. W. (2012),
“Application of Branching Point Process Models to the Study of Inva-
sive Red Banana Plants in Costa Rica,” Journal of the American Statisti-
cal Association, 107, 467–476. [566]

Barabási, A.-L. (2005), “The Origin of Bursts and Heavy Tails in Human
Dynamics,” Nature, 435, 207–211. [564,565]

Cohen, W. W. (2009), “Enron Email Dataset,” available at
http://www.cs.cmu.edu/ enron/ [576]

Congress (2003), “Report of Investigation of Enron Corporation and
Related Entities Regarding Federal Tax and Compensation Issues, and
Policy Recommendations, Appendix D VII Materials Relating to Pre-
Bankruptcy Bonuses,” available at http://www.gpo.gov/fdsys/pkg/GPO-
CPRT-JCS-3-03/content-detail.html [577]

Creamer, G., Rowe, R., Hershkop, S., and Stolfo, S. J. (2009), “Segmentation
and Automated Social Hierarchy Detection Through Email Network
Analysis,” in Advances in Web Mining and Web Usage Analysis, eds.
H. Zhang, M. Spiliopoulou, B. Mobasher, C. L. Giles, A. McCallum,
O. Nasraoui, J. Srivastava, and J. Yen, New York: Springer, pp. 40–58.
[565,577]

Daley, D., and Vere-Jones, D. (2003), An Introduction to the Theory of Point
Processes, Volume 1: Elementary Theory and Methods (2nd ed.), New
York: Springer. [566]

Halpin, P. F., and De Boeck, P. (2013), “Modelling Dyadic Interaction with
Hawkes Processes,” Psychometrika, 78, 1–22. [566]

Hawkes, A. G. (1971), “Spectra of Some Self-exciting andMutually Exciting
Point Processes,” Biometrika, 58, 83–90. [564,566]

Hawkes, A. G., and Oakes, D. (1974), “A Cluster Process Representa-
tion of a Self-exciting Process,” Journal of Applied Probability, 11,
493–503. [564,566]

Hegemann, R., Lewis, E., and Bertozzi, A. (2012), “An Estimate & Score
Algorithm for Simultaneous Parameter Estimation and Reconstruc-
tion ofMissingData on Social Networks,” Security Informatics, 2, 1–14.
[564,569]

Lewis, E., Mohler, G., Brantingham, P. J., and Bertozzi, A. L. (2011), “Self-
exciting Point ProcessModels of Civilian Deaths in Iraq,” Security Jour-
nal, 25, 244–264. [566]

Lewis, P. A., and Shedler, G. S. (1979), “Simulation of Nonhomogeneous
Poisson Processes by Thinning,”Naval Research Logistics Quarterly, 26,
403–413. [582,583]

Malmgren, R. D., Stou�er, D. B., Motter, A. E., and Amaral, L. A. (2008),
“A Poissonian Explanation for Heavy Tails in E-mail Communication,”
Proceedings of the National Academy of Sciences, 105, 18153–18158.
[564,565,568]

Marsan, D., and Lengliné, O. (2008), “Extending Earthquakes’ Reach
Through Cascading,” Science, 319, 1076–1079. [569,582]

Masuda, N., Takaguchi, T., Sato, N., and Yano, K. (2013), “Self-Exciting
Point Process Modeling of Conversation Event Sequences,” in Tempo-
ral Networks, eds. P. Holme and J. Saramaki, Berlin: Springer-Verlag,
pp. 245–264. [564]

McCallum, A., Wang, X., and Corrada-Emmanuel, A. (2007), “Topic and
Role Discovery in Social Networks With Experiments on Enron and
Academic Email.,” The Journal of Arti�cial Intelligence Research �JAIR),
30, 249–272. [577]

Meyer, P. (1971), “Démonstration Simpli�ée d’un Théoréme de Knight,”
in Séminaire de Probabiliés V Université de Strasbourg (Lecture Notes in
Mathematics, Vol. 191), Berlin,Heidelberg: Springer, pp. 191–195 [575]

Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., and Tita,
G. E. (2011), “Self-Exciting Point Process Modeling of Crime,” Journal
of the American Statistical Association, 106, 100–108. [566,569]



584 E. W. FOX ET AL.

Ogata, Y. (1978), “TheAsymptotic Behaviour ofMaximumLikelihood Esti-
mators for Stationary Point Processes,” Annals of the Institute of Statis-
tical Mathematics, 30, 243–261. [569]

———(1988), “StatisticalModels for EarthquakeOccurrences and Residual
Analysis for Point Processes,” Journal of the American Statistical Asso-
ciation, 83, 9–27. [566,575]

——— (1998), “Space-Time Point-Process Models for Earthquake Occur-
rences,” Annals of the Institute of Statistical Mathematics, 50, 379–402.
[566]

Perry, P. O., and Wolfe, P. J. (2013), “Point Process Modelling for Directed
Interaction Networks,” Journal of the Royal Statistical Society, Series B,
75, 821–849. [566,582]

R Core Team (2015), R: A Language and Environment for Statistical Com-
puting. Vienna, Austria: R Foundation for Statistical Computing, Avail-
able at https://www.R-project.org/. [583]

Scott,D. (1992),MultivariateDensity Estimation: Theory, Practice, andVisu-
alization, New York: Wiley. [568]

Shetty, J., and Adibi, J. (2004), “The Enron Email Dataset Database Schema
and Brief Statistical Report,” Information Sciences Institute Technical
Report, University of Southern California. [576,577]

——— (2005), “Discovering Important Nodes Through Graph Entropy the
Case of Enron Email Database,” in Proceedings of the 3rd International
Workshop on Link Discovery, ACM, pp. 74–81. [565,577]

Stomakhin, A., Short,M., and Bertozzi, A. (2011), “Reconstruction ofMiss-
ing Data in Social Networks Based on Temporal Patterns of Interac-
tions,” Inverse Problems, 27, 1–15. [564]

Tyler, J. R., Wilkinson, D. M., and Huberman, B. A. (2005), “E-
mail as Spectroscopy: Automated Discovery of Community Struc-
ture Within Organizations,” The Information Society, 21, 143–153.
[565]

Veen, A., and Schoenberg, F. P. (2008), “Estimation of Space–Time
Branching Process Models in Seismology Using an EM–Type Algo-
rithm,” Journal of the American Statistical Association, 103, 614–624.
[569]


