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We model and analyze the dynamics of religious group membership and size. A group is distinguished by its
strictness, which determines how much time group members are expected to spend contributing to the group.
Individuals differ in their rate of return for time spent outside of their religious group. We construct a utility
function that individuals attempt to maximize, then find a Nash equilibrium for religious group participation
with a heterogeneous population. We then model dynamics of group size by including birth, death, and switching
of individuals between groups. Group switching depends on the strictness preferences of individuals and their
probability of encountering members of other groups. We show that in the case of only two groups—one with
finite strictness and the other with zero—there is a parameter combination that determines whether the nonzero
strictness group can survive over time, which is more difficult at higher strictness levels. We also show that a high
birth rate can allow even the strictest groups to survive. Finally, we consider cases of several groups, gaining
insight into strategic choices of strictness values and displaying the rich behavior of the model.
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INTRODUCTION

Religion is a rich and dynamic phenomenon. Rates of religiosity rise and fall over time,
perhaps to rise and fall again, and some religious groups grow while others shrink.1 These
patterns are influenced by societal-level factors including the promotion or suppression of certain
or all forms of religious practice by government (Fox and Tabory 2008; Iannaccone 1991; Pew
Research Center 2017b) and by generational differences in religiosity (Pew Research Center
2018). Yet, at the heart of this vibrancy are the choices made by thousands, millions, or even
billions of individual persons deciding whether and how much to participate within a religious
group, whether to remain in one group, switch to another group, or abandon religious participation
altogether, and more. For example, the United States has experienced a decline in overall rates
of religious participation during the last several decades (Voas and Chaves 2016), but during
that time there has also been tremendous churn among American religious groups as individuals
affiliate, disaffiliate, and switch affiliations (Putnam and Campbell 2012). While some groups
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win in this competition for adherents, others lose, and the outcome is a religious marketplace
with a diversity of forms of religious practice.

A body of research during the last few decades has drawn inspiration from economic models
of markets and group production to link individual religious decisions with larger patterns of
religiosity, yet this work provides only an incomplete understanding of the dynamic processes in
religious markets. Two central thrusts of research are most relevant. The first identifies the locus
of religious activity in the religious group, with the group serving as a collective-production entity
that is susceptible to free-rider problems. The theory demonstrates that strict religious groups
better confront free-rider problems than their less-strict counterparts, thereby enabling the strict
groups to more successfully provide religious goods and services (Carvalho, Iyer, and Rubin
forthcoming; Iannaccone 1992; McBride 2007). This insight helps to explain why strict churches
have grown faster than less-strict churches during the last several decades (Iannaccone 1994).
The second is that wide diversity of religious preferences can sustain a wide range of religious
groups and practices when religious suppliers are allowed to enter and compete (McBride 2008,
2010; Stark and Finke 2000). As in the markets for other goods, there are differences in tastes for
different types and styles of religion, and a diversity of forms of religious practice are needed to
satisfy the diverse tastes. When entrepreneurs are allowed by government to supply this diversity,
high religious pluralism can result as religious consumers with different tastes make their optimal
affiliation decisions.

This article constructs and examines a dynamic model of religious competition that combines
these two theories into a single framework. In so doing, we are able to reconcile what may at
first appear to be a contradiction between the two views. While the latter theory recognizes
the viability of all types of religious practice styles, the former implies that strict religious
groups should outperform and possibly drive their less-strict competitors out of the market.
We propose that the theories do work together but that additional factors are also relevant to
a broader understanding of religious competition. In particular, we suppose that the relative
success of different religious groups will depend not just on strictness but also on several other
factors mentioned in the literature but not yet examined in a formal dynamic framework. Among
these other factors are the strength of the cultural transmission of religious preferences across
generations, the likelihood of exposure to other groups, the underlying distribution of preferences
for nonreligious goods, and birth rates.

The incorporation of these features into our model draws inspiration from two other litera-
tures. One literature establishes the vital role of demographic factors in the growth and decline of
religious groups (Hout, Greeley, and Wilde 2001; Scheitle, Kane, and Hook 2011). The second
literature uses dynamic models of cultural transmission to understand the spread of religious
practices within and across generations (Bisin and Verdier 2000; Carvalho 2013). A primary
contribution of our article is in combining several ideas in different literatures into one rich,
dynamic model that yields new results. Specifically, we combine key conceptual elements of the
club model of religious production, spatial models of religious competition, demographic models
of religious growth and decline, and the dynamic models of cultural transmission.

Our mathematical and computational analysis reveals that the dynamics of a religious market
with these many features are rich with notable emergent patterns. One finding is that very strict
groups will die out unless they have sufficiently high birth rates and retention. This finding has
been predicted in prior work (McBride 2015), and our analysis reveals that it is robust to several
additional complexities in the market. A second finding is that moderate groups can survive if
their strictnesses advantageously places them near the mean of the underlying distribution for
nonreligious goods. That is, if most religious consumers have moderate opportunity costs of
religion, then religious groups that only ask for a moderate commitment will appeal to a large
fraction of the population, thus enabling those moderate groups to survive despite not producing
religious goods as intensely as the much stricter groups. That moderate groups can survive and
thrive has been noted before in explicit dynamic studies (Makowsky 2011; Montgomery 1999),
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but we demonstrate how several other factors not mentioned in those studies can also contribute
to the persistent success of moderate groups.

A few prior attempts to explicitly model religious market dynamics are most similar to
ours. Montgomery (1999) examined an environment with three strictness levels and the ability
for religious groups to adjust strictness levels as their membership compositions changed over
time. He found that the low-strictness groups do shrink and die out as predicted under some
parametric configurations, but that they also survive and thrive under others. Makowsky (2011)
allowed for a wider range of possible strictnesses to show why the less-strict groups might thrive.
Lighter membership requirements allow for larger in-group heterogeneity in more moderate
rates of free-rider mitigation, thus allowing for a degree of success in the market. Carvalho and
Sacks (2018) provide a dynamic, theoretical model of a minority group competing with a rival
mainstream culture. As in our setting, they allow for heterogeneous religious preferences, exit
options, and competition, but we consider group survival and demographic change with more than
two groups, while they examine the rise and fall of extremism in a two-group setting. Finally,
Scheitle, Kane, and Hook (2011) simulated the growth of a hypothetical American religious
group under different assumptions about in-group fertility and religious switching. They show
that both fertility and switching play key roles, and that switching plays a particularly important
role in the long run. Our model differs from these prior studies in its formal synthesis of the
several factors mentioned earlier, i.e., cultural transmission across generations, differential rates
of interaction among individuals of different groups, and variation in birth rates. Ultimately, our
work demonstrates how these many factors contribute to the variety of outcomes possible in a
religious market.

Ours is a theoretical study. The formalism of the mathematics enforces coherence and
specificity in assumptions about the process of religious decision making. Such assumptions are
meant to capture the essence of factors believed to be important, but we acknowledge that they are,
by their nature, abstractions that emphasize some psychological and social forces at the expense
of others. We pursue this approach because we believe that exploring the logical relationships
between assumptions about religious choices and emergent patterns is itself a worthy endeavor.
At the same time, we recognize that the value of purely theoretical study is further enhanced and,
ultimately, assessed by its ability to explain and predict empirical patterns. Although explicitly
testing our model empirically is beyond the scope of our article, we do discuss how our findings
add to our current understanding and provide direction for future work. We also refer to specific
real-life examples that we believe demonstrate key ideas in the article.

SINGLE-GROUP MODEL

Individual Utility Function

Each individual must decide what portion of his or her time will be devoted to in-group
activities, with the remaining portion devoted to out-group activities.2 Without loss of generality,
we assume that each person has a total time of 1, and the amount that individual i then devotes to
in-group activities is denoted by ti . It is assumed that in-group time is spent communally by the
members of the group in production of “goods” that are distributed among the group members
evenly, regardless of their individual contribution.

2We here describe the decisionmaker as acting instrumentally in pursuit of her goals as represented by a utility, whatever
those goals may be. We find this interpretation to be the natural one in our setting because it fits the process of religious
switching described later in the article. Using this language also eases the exposition. We note, however, that a utility
representation does not have to be interpreted as instrumental choice. Utility representations assume consistency in choice,
not instrumentality (Gaus 2007).
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We define the in-group utility function Uin of person i as

Uin = c

(∑
j t j

Ng

)1/2

, (1)

where c > 0 is a constant, Ng is the total population of the religious group g to which individual
i belongs, and

∑
j is taken over all members of group g, including member i .

As is standard in economic models, the utility function represents how the individual ranks
different possible alternatives that may arise in the course of social interaction. A technical
condition is that, as all t j ≤ 1, the sublinearity of the in-group utility in terms of the mean in-
group time contribution causes the utility to be greater than the mean, reflecting the efficiency of
group work. Of course, raising the mean in-group time contribution to any positive power less
than 1 would do the same; we choose the power to be 1/2 for simplicity. We also assume that
all groups share the same factor c, such that no groups are inherently better at producing group
utility than others. Finally, implicit in Equation (1) is the assumption that Ng > 1, otherwise the
“group” would merely be a single individual. If Ng = 1, then Uin = 0.

Out-group activities yield a utility that is linear in the time spent outside the group, 1 − ti ,
such that

Uout = ri (1 − ti ). (2)

The factor ri ≥ 0 could reflect something like an hourly wage that can be earned at a job away
from the group, but more generally reflects how much an individual personally values her time
away from the group, during which she can engage in whatever activities she prefers. We will
assume throughout that the values of ri for the various individuals are, when not determined by
inheritance (detailed in subsection “Birth, Death, and Inheritance”), drawn from a probability
density R(r ).

The religious group is subject to potential free-rider problems. The amount that individual i
earns from in-group activities may be dominated by the various t j of the other group members,
while the out-group utility is determined solely by the actions of individual i in such a way that
time spent in-group returns a smaller Uout . Hence, many individuals may maximize their utility
by simply choosing to contribute ti = 0, which will maximize Uout while in many circumstances
leaving Uin relatively unchanged. To combat such behavior, we allow the group to administer
a punishment such that those members contributing less than what the group deems a minimal
acceptable level will have their utilities reduced by an amount

Pun = βg(λg − ti )+.

Here, βg ≥ 0 sets the overall scale for punishment within group g, while λg ∈ [0, 1] is defined
to be the “group strictness,” which is the main trait that will serve to differentiate groups within
our model, and (·)+ denotes the positive part of (·). The larger λg is, the stricter the group and
the more time the group demands of its members. However, a member is only punished if she
fails to contribute at least λg to the in-group activity. The punishment conceptualized here may
be reflected in many ways: actual withholding of some of the group-produced goods from the
individual, social pressures that may lead to ostracizing, or something else. Stricter groups have
the means to enforce in-group norms, including norms related to in-group contributions.

The overall utility function U of person i in group g is equal to the sum of in-group production
Uin and out-group production Uout minus the punishment Pun. Without loss of generality, we
will scale all utilities by the common factor c and redefine ri and βg in terms of this standard
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scale, such that our final individual utility function is

Ui = Uin + Uout − Pun

=
(∑

j t j

Ng

)1/2

+ ri (1 − ti ) − βg(λg − ti )+. (3)

Single-Group Nash Equilibrium

We now consider the case of a single group with parameters λg = λ and βg = β and with a
fixed set of members, such that the population size Ng = N and the set of r values present within
the group are unchanging. Then, to be determined for each individual in the group is what value
of ti she should choose. It is assumed that every individual is attempting to maximize her own
personal Ui through this choice, but note that each person’s Ui is also partially determined by
the decisions of every other group member through the Uin term. Then, this is a classical game-
theoretic problem, where the standard solution concept is the Nash equilibrium. In this case, a
Nash equilibrium would be a set of in-group times of each member �t = {t1, t2, . . . , ti , . . . , tN }
with corresponding member utilities �U = {U1, U2, . . . , Ui , . . . , UN } such that there does not
exist any alternative �t ′ = {t1, t2, . . . , t ′

i , . . . , tN } in which only member i has changed her choice
such that the corresponding �U ′ = {U ′

1, U ′
2, . . . , U ′

i , . . . , U ′
N } would satisfy U ′

i > Ui , for any i .
In other words, in a Nash equilibrium, no individual i can increase her utility by unilaterally
changing to a different ti .

In principle there are five options for ti that could possibly maximize Ui for an individual,
given that all other t j are fixed: 0, 1, λ, and two potential critical points we might call λ < ta < 1
and 0 < tb < λ located at

ta = 1

4Nr2
i

− Ti ≡ ai + (1 − ai )λ, 0 < ai < 1, (4)

tb = 1

4N (ri − β)2
− Ti ≡ biλ, 0 < bi < 1, (5)

where Ti = ∑
j 	=i t j . Note that due to constraints on the intervals where they may be located, ta

is only available to individuals whose ri satisfies

1

2
√

N (1 + Ti )
< ri <

1

2
√

N (λ + Ti )
, (6)

and tb is only a valid critical point for individuals with

1

2
√

N (λ + Ti )
+ β < ri <

1

2
√

N Ti
+ β. (7)

For fixed Ti , Ui (1) = Ui (λ) at an ri value within the range of values in Equation (6), with
ri values higher than this causing Ui (1) < Ui (λ). Similarly, U (λ) = U (0) at an ri value in the
interval in Equation (7), with ri values higher than this causing Ui (0) > Ui (λ). Also note that for
fixed Ti and ti = 0, 1, or λ, Ui is trivially nondecreasing in ri . For ta , which is a function of ri ,
we have

Ui (ta) = 1

4Nri
+ ri (1 + Ti ), (8)
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Figure 1
An illustration of the existence and determination of the Nash equilibrium

for the single-group case
[Color figure can be viewed at wileyonlinelibrary.com]

Notes: Here, the ri of the group members is shown as blue X marks on the horizontal axis, the solid red curve is
Equation (A2), and the discontinuous black curve is Equation (A1).

which is also increasing on the region of ri values for which ta is available, and ranges over values
between Ui (1) and Ui (λ). Similarly,

Ui (tb) = 1

4N (ri − β)
+ ri (1 + Ti ) − β(λ + Ti ), (9)

which is also increasing in ri for all values for which it is available and ranges between the values
Ui (λ) and Ui (0). Hence, for fixed Ti , the maximal value of Ui is a nondecreasing function of ri ,
and the optimal ti continuously transitions from 1 → ta(ri ) → λ → tb(ri ) → 0 as ri ranges from
0 → ∞. These results motivate the following Nash equilibrium for a single group.

Theorem 1. Let �r denote the list of ri values for the N members of the group, sorted from least
to greatest. There exists a number R1 > 0 that is a function of �r , N , λ, and β such that, if all
individuals with ri < R1 choose ti = 1, all with ri = R1 choose ta with a potentially specific value
of a, all with R1 < ri < R1 + β choose ti = λ, all with ri = R1 + β choose tb with a potentially
specific value of b, and all with ri > R1 + β choose ti = 0, the system is in a Nash equilibrium.

The proof (and all other proofs) are found in the Appendix. Intuitively, the amount of time
that each group member devotes to in-group activities in the equilibrium is decreasing in that
person’s opportunity cost of time ri . Those with very low ri will devote all or most of their time
to the group while those with higher ri will devote less and less as ri increases. An illustration
of the Nash equilibrium is shown in Figure 1. Here, 10 individuals with ri values shown as blue
X marks on the horizontal axis are members of a group with λ = .25 and β = .15. The solid red
curve is Equation (A2), while the discontinuous black curve is Equation (A1), with a ≈ .62 and
b = .6 (though the value of b is unimportant in this particular case, as no individuals play tb).
Note the single point of intersection of these two curves, guaranteeing that the Nash equilibrium
exists, which in this case occurs at the r value of one of the group members, and is labeled as R1.
Then the two individuals with ri < R1 will choose ti = 1, the single individual at ri = R1 will
choose ti = a + (1 − a)λ with a ≈ .62, the six individuals with R1 < ri < R1 + β will choose
ti = λ, and the one remaining individual will choose ti = 0. Consistent with the intuition, group
members’ time contributions decrease in ri values.
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Ideal Strictness and Punishment Levels

The previous section considers how a variety of individuals already within a group and with
varying ri will determine their ti given the group strictness λ and punishment factor β. Here, we
study a somewhat different problem, focusing on one value of ri at a time and asking what are
the ideal strictness and punishment factor for individuals with that particular ri value. To do so,
we assume that N people with identical parameters ri = r are originally unaffiliated, meaning
they are not currently a member of any group and receive only Uout . They would like to form a
group together of strictness λ to get a higher payoff than being unaffiliated. We assume for now
that, since all individuals have the same ri , they will all choose the same ti ; we will prove later
that this can be made to be so. If this is the case, then they will all choose ti = λ of the group they
have formed; choosing ti = 0 leaves them no better off than they currently are being unaffiliated,
and choosing ti = 1, ta , or tb would be equivalent to forming a group with λ corresponding to
that specific choice. Then, each individual will receive payoff

U =
√

λ + r (1 − λ). (10)

This payoff is maximized for ideal strictness λ = 1/4r2. Note, though, that since λ ≤ 1 by
definition, if r < 1/2, the ideal strictness is simply λ = 1. For this reason, in the remainder of the
article we generally assume that all ri ≥ 1/2. If the group adopts the ideal strictness level, it will
end up with a maximized utility of Umax = r + 1/4r .

However, we must now determine whether the above situation is a Nash equilibrium as
discussed above. Specifically, with all N individuals having the same ri = r , in a group of
strictness λ = 1/4r2, we require all individuals playing ti = λ to result in a threshold R1 such
that R1 < r < R1 + β, which is the condition needed for the Nash equilibrium. In this case,
T = λN , so that R1 = r/N < r from Equation (A2). But, this is only a Nash equilibrium if
r < R1 + β, so that we need β > r (1 − 1/N ). To allow for a group of any potential size, then,
we could simply use β = r . With this being the case, the total punishment for a person were
she to choose ti = 0 instead of ti = λ would be P = βλ = √

λ/2 ≤ 1/2, which is less than
the Uin received from being in the group. Hence, a minimum punishment level is necessary to
guarantee that no individuals in this group will be tempted to switch from ti = λ to ti = 0, but
this punishment level is bounded and need not completely remove the benefits of being in the
group (Uin) to be entirely effective. This is a classical example of the “free-rider” problem, which
in this case can be solved with sufficient punishment for free riding.

It is possible to set a bounded punishment level that dissuades any of the ri = r members
of the group from deviating from the choice ti = λ without completely removing that member’s
Uin . But can the same be done to dissuade outsiders with differing ri > r from joining the group
and playing ti = 0? Imagine another individual with ri > r joining the existing group, so that N
increases by one, but λ and β are as indicated above. Any such individual can only decrease the
value of R1, but never so much that R1 + β < r given our β value, so all the original individuals
will always continue to play ti = λ. However, the added individual will only free ride if her utility
from doing so is greater than her utility from choosing ti = λ. That happens if

√
λ + ri (1 − λ) <

√
λN/(N + 1) + ri − βλ, (11)

which would only necessarily be the case in arbitrarily sized groups if β < ri . At the same time,
though, this new individual will only join the group to free ride if the utility of doing so is greater
than the utility of simply being unaffiliated, which only happens if√

λN/(N + 1) + ri − βλ > ri . (12)
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So, by choosing β = √
N/λ(N + 1), the group can prevent all possible free riding. Of course, in

this case the punishment for free riding is Pun = βλ ≈ √
λ, so that the punishment is to simply

remove the entirety of Uin .
One can also consider what may happen if an individual with ri < r joins the group. Again,

note that adding such individuals can only decrease R1, but never so much so that R1 + β < r , so
any such added individuals will never cause the existing group members to become free riders.
The newly added individual can therefore only play ti = 1, λ, or a linear combination of the
two (ta). Upon adding such an individual, the intersection between Equations (A1) and (A2)
(see Appendix) can only occur at one of three places: at an R1 > ri where Equation (A1) yields
λN + 1 and ti = 1, at R1 = ri where Equation (A1) yields λ(N + 1) + a(1 − λ) and ti is a linear
combination of 1 and λ, or at an R1 < ri where Equation (A1) yields λ(N + 1) and ti = λ. But
in the first case, R1 = 1/2

√
(N + 1)(1 + λN ) < 1/2 so ri cannot satisfy ri < R1, as we have

already constrained all ri ≥ 1/2, so the first case is ruled out by prior assumptions, and the new
individual does not play ti = 1. The third case gives R1 = r/(N + 1), so any ri > r/(N + 1) will
cause the new individual to choose ti = λ, which is quite likely in a very large group. Finally,
any 1/2 ≤ ri ≤ r/(N + 1) will cause this individual to play a linear combination of 1 and λ. In
fact, this argument is easily extended to a situation in which there are many ri values present, all
≤ r , in which case at most the individual(s) with the smallest ri may play a linear combination
of 1 and λ, but all others will play λ.

MULTIPLE-GROUP MODEL

Dynamics of Group Membership

We now turn to a more dynamic situation in which there are potentially several groups
to choose from, and individuals may be changing their affiliations over time. The overall goal
of the model will be to describe how the sizes of religious groups vary over time given the
distribution of r values in the population, the strictness values of the various groups, and other
considerations discussed below. This variation is of course directly determined by the rate at
which individuals enter a group versus the rate at which they leave a group, and these rates
are themselves determined by two mechanisms that we will consider: (1) birth and death of
group members and (2) individuals switching group affiliation. Both factors are important for
understanding the trajectory of religious group membership (Scheitle, Kane, and Hook 2011).
We cover each effect separately below, and summarize the model in Figure 2.

Before describing these effects in detail, we define a few more aspects of the model. First,
we assume that the values ri for all of the individuals within the entire society, encompassing all
existing groups, are (at least initially) derived from a probability density R(r ). Second, we will
at times wish to consider a special group known as the “unaffiliated group” whose strictness is
by definition 0 and for whose “members” there is no Uin . As the name implies, this group really
encompasses all those individuals who are not affiliated with any standard group with λ > 0;
as such, these individuals are not partaking in any in-group activities whatsoever and all choose
ti = 0.

Given the results above regarding ideal strictness and punishment levels, we make the
following simplification moving forward. Specifically, we will assume that all groups will select
a β that dissuades any possible free riding, and that therefore all of the members of any group will
simply play ti = λ. The only approximation involved in this assumption is that we are ignoring
the possibility of the member(s) with the smallest ri values playing a linear combination of 1
and λ, but this is a very borderline case that should not affect the remainder of the results.
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Figure 2
A flowchart detailing the various pieces of the multigroup model

Birth, Death, and Inheritance
We assume that each group has a per capita birth rate bg , which could potentially be group

dependent, but that each group has the same per capita death rate d. When individuals die, they
are simply removed from the population, thus decreasing Ng by 1 for the group to which they
belonged. When individuals are born, it is assumed that their initial affiliation is the same as that
of their parent(s), so they will increase Ng by 1 for the group that they are born into. In addition,
whenever a new individual is born, with probability z her ri is equal to that of her parent and with
probability 1 − z her ri is taken randomly from the distribution R(r ). Parameter z thus captures
the degree of in-group cultural transmission from parent to child. If all groups exhibit the same
birth rate, this mechanism will cause the expected distribution of r values within the population
to be stationary in time, and equal to the distribution R(r ).

Changing Affiliation
We assume that every individual has one chance in life to change group affiliation. This

opportunity is given to each individual effectively directly after his or her birth; for simplicity,
though, this is meant to capture the possibility of switching groups once an individual becomes
an independent adult.

Group switching is conceptualized in the following way for individual i who is currently a
member of group g and values out-group activities at rate ri . First, given the set of M groups and
their corresponding strictness values λg′ , individual i could in principle associate with any of the
groups g′ and thereby obtain utility

Uig′ = √
λg′ + ri (1 − λg′). (13)

The only exception to the above formula is for the unaffiliated group, which we will label as
g′ = 0, whereby the utility is simply Ui0 = ri .

In a system with perfect and complete information, each individual would simply determine
which g′ provides the maximum utility and choose that group. However, an important aspect of
switching religious groups is exposure to the group: if one is exposed to members of a group
frequently, the chance of switching to that group should be higher than that of switching to a
group whose members you have never met, all else being equal. This motivates us to define
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what we will call the exposure probability of an individual currently in group g to members of
group g′

αgg′ = 1 −
[

1 − (1 − λg′)Ng′∑
k(1 − λk)Nk

]s(1−λg )

, (14)

where s > 0 is a model parameter and Ng is the number of members in group g.
Underlying this exposure probability is the assumption that during out-group time, all mem-

bers of society are well mixed. Then, for any given out-group chance encounter of an individual,
the probability that the person met is in group g′ is simply proportional to the number of people
from g′ who are spending time out of group at that moment, which is (1 − λg′)Ng′ . Of course,
the number of out-group chance encounters that an individual in g experiences throughout her
life up until the moment she may select to switch groups is proportional to the amount of time
she spends in general outside the group, represented by the s(1 − λg) term. Then, αgg′ is the
probability that our individual has had at least one encounter with a person from group g′ by the
time she may choose to switch groups. The exceptions to Equation (14) are for the case g′ = g,
in which case αgg = 1 since everyone has had encounters with members of their own group for
certain, and the case g′ = 0, for which we also assume αg0 = 1 since one need not encounter
unaffiliated individuals in order to “join” the unaffiliated “group.”

Given then the utilities Uig′ and exposure probabilities αgg′ , switching for individual i
currently in g occurs in the following way. First, we sort the groups such that g′ is in front of g′′

if

1. Uig′ > Uig′′ .
2. Uig′ = Uig′′ and αgg′ > αgg′′ .
3. Uig′ = Uig′′ , αgg′ = αgg′′ , and λg′ < λg′′ .

This leaves us with a permutation of groups, denoted by σ ( j), where j = 0, 1, . . . , M − 1.
Then we simply march down the permutation starting with j = 0, at each point determining
whether i chooses group σ ( j) via the exposure probability αgσ ( j) until she probabilistically joins
a group. This procedure is attempting to assign every individual to her highest utility group, but
only does so if there was sufficient exposure to that group, else the next highest utility group is
attempted, etc. Note that this procedure will always end with i joining some group, because αgg

and αg0 are both 1, so in the extreme case she can always stay in her current group or become
unaffiliated. Because of this, an individual will never switch to a group with lower utility than her
current group (though it may be of equal utility).3

Also note that if person i spends all her time in in-group activities, which should only occur
if λg = 1, then all the αgg′ are zero except for αg0 and αgg . Such an individual has no opportunity

3A potential criticism of this formulation of religious switching is that it applies only to very specific settings, such as
Christian America. This criticism has a degree of merit but perhaps less merit than might be first thought. Its merit consists
of the reality that political, legal, and social institutions and regulations have inhibited the free movement of individuals
in and out of religious groups for much of human history. The type of switching we assume requires the existence of
multiple groups, but the presence of alternative religious groups has traditionally been suppressed in many countries
and continues to be suppressed in many countries today (Fox and Tabory 2008). However, it could also be argued that,
without such external legal and social constraints, the movement of individuals in and out of religious groups would be
quite natural. Moreover, the model could be adjusted to include high social and legal costs to religious switching. Such
costs can be easily added to the utility function. We do not include them for two reasons. First, the inclusion of these
costs would result in very obvious changes to the model, such as a lower rate of switching out of the legally privileged
group and the shrinkage of alternative groups. Second, we are specifically interested in the dynamics of a setting with
free flows as they serve as an important benchmark for comparison. As an aside, we do note that switching is actually not
unique to today’s United States, but there have been historical cases of relatively free religious markets (Brekke 2016).



DYNAMICS OF RELIGIOUS GROUP GROWTH AND SURVIVAL 77

to switch to any but the unaffiliated group, or simply remain in her current group. Furthermore,
if any group g has λ = 1, then for any other group g′ 	= g we have αg′g = 0. Therefore, the size
of a group with strictness 1 will never grow due to new members joining from the outside, and
can only drop if members choose to become unaffiliated.

Differential Equation Model for Group Size

Given the dynamics specified above, one could implement a discrete, agent-based model
immediately to observe how the system evolves. Here, we instead cast the problem in terms
of ordinary differential equations, so as to achieve a greater ability to understand the model
analytically. The assumption here is that the overall population size is very large, so that taking
an expectation of the stochastic dynamics may yield a good approximation to the discrete case.

We assume going forward that no two groups share the same strictness level: λg 	= λg′ for all
g 	= g′. Then, given the number of groups M and their various strictness levels, each potential r
value from the distribution R(r ) can be classified by its permutation σr ( j) of the groups strictly
in terms of the utility of the groups to a person with parameter ri = r . As such, we can divide
the total population into a finite number S of subpopulations, each of which is labeled by the
permutation of groups σ that all members of that subpopulation have in common. Then our model
need only track the number of individuals in group g that are members of subpopulation σ over
time, labeled as ngσ (t). Note that

∑J
σ ngσ (t) = Ng(t). We define the fraction of the distribution

R(r ) that encompasses subpopulation σ to be fσ . Then the differential equation governing the
expected value of ngσ (t) is

dngσ

dt
= −ngσ +

M−1∑
g′=0

bg′
[
zng′σ + fσ (1 − z)Ng′

]
pg′gσ . (15)

Here, we have scaled time by the common death rate d, so that bg is now the relative (to death)
birth rate of group g. The new term pg′gσ is simply the probability that when a person currently
in g′ is given the opportunity to switch groups, she switches to group g, conditional on being a
member of subpopulation σ . If group g takes position J in ordering σ , then

pg′gσ = αg′g

J−1∏
j=0

(
1 − αg′σ ( j)

)
. (16)

That is, in order to choose g given preference σ , one needs to not choose any of the groups σ ( j)
with j < J that are higher in the ordering, and then needs to choose to join g, with all of the
probabilities dictated by the various αg′σ ( j).

In general, it is more convenient to consider the size of a given population relative to the
total population size N , so we now recast Equation (15) in terms of new variables ñgσ = ngσ /N
and Ñg = Ng/N . Given that the differential equation for N in time units scaled by the common
death rate d is

d N

dt
= −N +

M−1∑
g′=0

bg′ Ng′,

we obtain the differential equation

dñgσ

dt
=

M−1∑
g′=0

bg′
([

zñg′σ + fσ (1 − z)Ñg′
]

pg′gσ − Ñg′ ñgσ

)
, (17)



78 JOURNAL FOR THE SCIENTIFIC STUDY OF RELIGION

where the p values are the same as above, and the α values still follow Equation (14) but with N j

replaced with Ñ j . In general, we will use Equation (17) from now on with all tildes dropped, and
all references to sizes of populations will be scaled by total population size, which may or may
not be constant.

Two Groups

In this section, we present some analytical results for the simplest nontrivial case, that of
two groups. The groups here are the unaffiliated group labeled 0 and an affiliated group labeled
1 with some strictness value λ1 = λ > 0. Since there are only two groups, we only have S = 2
subpopulations with different ordering preferences σ , {0, 1} and {1, 0}, which we will refer to as
simply σ0 = 0 and σ1 = 1, respectively. Then, let f1 = f so that f0 = 1 − f1 = 1 − f . Finally,
note that N0 + N1 = 1.

According to the rules of switching:

1. People can always stay in the original group if they prefer that group. Thus, α00 = α11 =
1. Then p000 = p111 = 1 and p010 = p101 = 0.

2. People can always switch to the unaffiliated group if they prefer it. Thus, α10 = 1. Then
p100 = 1 and p110 = 0.

2. People who are originally in group 0 and prefer group 1 can switch to group 1 with
probability

p011 ≡ p = α01 = 1 −
[

1 − (1 − λ)N1

1 − λN1

]s

. (18)

4. People who are originally in group 0 and prefer group 1 will nonetheless stay in group
0 with probability p001 = 1 − p.

First, consider the case in which all birth rates have the same value, which we set to unity.
Then Equation (17) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dn00
dt = −n00 + z(n00 + n10) + (1 − f )(1 − z)

dn01
dt = −n01 + [zn01 + f (1 − z)N0)] (1 − p)

dn10
dt = −n10

dn11
dt = −n11 + [zn01 + f (1 − z)N0] p + [zn11 + f (1 − z)N1] .

(19)

At equilibrium, then, we clearly have n10 = 0 and n00 = 1 − f . Given that the total popula-
tion size adds to unity, we can recast the remaining two equations in terms of a single variable,
which we will choose to be n11 = N1 = n. For notational simplicity, let K = z + f (1 − z) (so
f ≤ K ≤ 1). Then at equilibrium, we have

dn

dt
= ( f − K n)p(n) + K n − n ≡ g(n) = 0, (20)

where

p(n) = 1 −
[

1 − n

1 − λn

]s

. (21)

Equation (20) is significant because it sets the equilibrium size n of group 1 in the two-group
case, given the parameters. With extremely high λ there will be very little switching into the very
strict group as would be expected because of its very high strictness. In the extreme case λ = 1,
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Figure 3
The size of group 1 at equilibrium is plotted as a function of its strictness λ for varying values of
z, with s = .75 fixed and the distribution R(r ) chosen at each λ such that f = .5 [Color figure

can be viewed at wileyonlinelibrary.com]
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we have p = 0 so that at equilibrium n = 0 unless K = 1, which can only happen if f = 1 and/or
z = 1. For cases λ < 1, we have the following formal result that matches our intuition.

Theorem 2. If g′(0) = f s(1 − λ) + K − 1 ≤ 0, then the equation dn
dt = g(n) has only the trivial

equilibrium point n = 0 and it is stable. Otherwise, the trivial equilibrium point becomes unstable
and the equation has another stable equilibrium at a point n0 in (0, f ).

We gain several insights from this result. One is that a group with strictness λ > 0 will only
survive as a finite fraction of the population at equilibrium if inequality

f s(1 − λ) + f (1 − z) > 1 − z (22)

is satisfied. It could be imagined that the inheritance rate z and the parameter s are not under the
control of any of the groups, but λ, and thereby f , are. Note that f is given by the fraction of
R(r ) for which being in group 1 is preferable to being in group 0, and is given by

f =
∫ 1/

√
λ

1/2
R(r )dr.

Hence, the left-hand side of the inequality (22) is decreasing in λ, so that more strict groups are
more apt to die out over time than less strict groups. In this case, we should not see ultra-strict
groups because they would die out. For any given R, z, and s, inequality (22) implies a maximal
strictness that the group can adopt and still continue to survive in the long run.

So why then do we see relatively ultra-strict groups such as the Amish and Hasidic Jews
survive and grow? One way to combat the threat of dying out is to raise the probability of
inheritance z (see Figure 3). Inheriting the r value from their parents means that the children
also have the same preference as their parents. Hence, if somebody is already in her optimal
group, her descendants who inherit her r value are not going to make any switch, causing the
group to maintain its size from internal birth more so than in cases where inheritance is low. In an
extreme case that z = 1 and everybody can take the r value from her ancestors, at the equilibrium,
everybody will stay in her favorite group. The Amish are noted for the very high rate of retaining
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Figure 4
The size of group 1 at equilibrium is plotted as a function of its strictness λ for varying values of

s, with z = .5 fixed and the distribution R(r ) chosen at each λ such that f = .5 [Color figure
can be viewed at wileyonlinelibrary.com]
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their youth within the group; one estimate puts retention at about 90 percent (Kraybill, Nolt, and
Weaver-Zercher 2012).

Increasing the model parameter s has a similar effect (see Figure 4). That is because the
larger s is, the greater the αgg′s are, so there is a higher probability for people to switch to their
optimal group. When s goes to ∞, α01 goes to 1 unless λ1 = 1. In this extreme case, everybody
will end up in their optimal group if λ1 	= 1. On the other hand, when s goes to 0, α01 goes to 0.
So people in group 0 preferring group 1 are never capable to make the switch. However, people
in group 1 can always become unaffiliated if this is a better choice. Then group 1 keeps losing
people and will eventually die out.

The results above only apply to the case in which the two groups have a common birth rate,
and show that in some circumstances the strict group will die out. In reality, we often see that
stricter religious groups have higher birth rates relative to less strict groups (Frejka and Westoff
2008; Scheitle, Kane, and Hook 2011). Amish families, for example, typically have about seven
children (Kraybill, Nolt, and Weaver-Zercher 2012). A high birth rate in the ultra-strict group
can counteract the relatively low rates of conversion into the group that result from the relatively
low exposure that outsiders receive to the group and possibly an inherently smaller fraction of
the population for whom such a strict group is ideal. This in turn could potentially allow a stricter
group to continue to survive by increasing its internal growth rate. Therefore, we now consider the
case in which group 0 retains birth rate 1, but group 1 has birth rate b ≥ 1. Then the differential
equations governing the fractional populations are⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dn00
dt = z(n00 + bn10) + (1 − f )(1 − z)(N0 + bN1)(1 − n00)

dn01
dt = [zn01 + f (1 − z)N0] (1 − p) − (N0 + bN1)n01

dn10
dt = −(N0 + bN1)n10

dn11
dt = [zn01 + f (1 − z)N0] p + b [zn11 + f (1 − z)N1] − (N0 + bN1)n11.

(23)

As in the case above, we again find that at equilibrium n10 = 0, so we can cast the equilibrium
equations in terms of n11 = N1 = n, with N0 = 1 − n still. After some algebraic manipulations,
we find that the population n at equilibrium satisfies{−K (b − 1)n2 + n [(b − 1)(K z + f (1 − z)) − K (1 − z)] + f (1 − z)

}
p(n)
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Figure 5
The size of group 1 at equilibrium is plotted as a function of its strictness λ for varying values of

b, with s = .75 and z = .5 fixed and the distribution R(r ) chosen at each λ such that f = .5
[Color figure can be viewed at wileyonlinelibrary.com]
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+ {−(b − 1)2n2 + n(b − 1)(bK + z − 2) + (1 − z)(bK − 1)
}

n = gb(n) = 0. (24)

Then the following result holds.

Theorem 3. For any 0 < λ ≤ 1, there exists a minimal birthrate bmin that allows for survival of
the stricter group at equilibrium.

This result indicates that for very strict groups, a higher than average birth rate may be
necessary for long-term survival, but also guarantees that this is always possible. Indeed, because
bmin is increasing in λ, the stricter a group wishes to be, the greater the birth rate necessary for
survival, assuming the group could not survive at b = 1. Moreover, because the largest possible
value of bmin , occurring at λ = 1, could not be greater than 1/z, any group with a birth rate higher
than this is guaranteed to survive regardless of its λ. Figure 5 illustrates that if the strict group
has a higher birth rate, while all the other parameters are fixed, it can still survive.

Generating a high birth rate and high rate of inheritance appears to be the strategy that
ultra-strict groups like the Amish and ultra-orthodox Jews follow to thrive despite their very high
strictness. Other strict (but not ultra-strict) groups like the Mormons also maintain fertility rates
higher than the national average. But their higher rates of participation in regular culture also
imply that they should experience higher rates of religious switching both in and out of the group.
Indeed, in any given year, about one-third of new membership in the Mormon Church comes
from births, while two-thirds comes from converts (The Church of Jesus Christ of Latter-Day
Saints 2018).

Three Groups

In the previous section, we determined the conditions under which a single group with
positive strictness level may survive at equilibrium alongside the unaffiliated group. Of course, in
the real religious marketplace, many groups simultaneously coexist, so one would ideally want to
analyze multigroup cases within the context of our model. Unfortunately, the model’s complexity
increases very rapidly with the number of groups due to two main factors: the possibility of
inheritance of r values and the rapid growth in the number of group preference orderings σ with
number of groups M .
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Figure 6
Equilibrium sizes of three groups as the strictnesses of the two affiliated groups vary

[Color figure can be viewed at wileyonlinelibrary.com]

Notes: In all cases, s = 3, z = .5, birth rates are uniform, and the distribution R is lognormal with parameters given in
the text. (Left) The preexisting group has strictness .25; (Center) the preexisting group has strictness .50; (Right) the
preexisting group has strictness .75.

For example, consider now a scenario where M = 3. Then there are four different σ orderings
of the groups that can occur: σ0 = {0, 1, 2}, σ1 = {1, 0, 2}, σ2 = {1, 2, 0}, and σ3 = {2, 1, 0}.
Given an inheritance level z 	= 0, we must keep track of the number of individuals of each
ordering within each of the three groups, leading to a 12-dimensional system, which can be
reduced by one dimension down to 11 because the total population size is 1. Due to the dynamics
of group switching, some of the subpopulations will simply exponentially decay, namely, n10, n20,
and n21, leaving us with effectively an eight-dimensional system for the case of only three groups.
This unfortunately makes analytical work even for this small number of groups quite difficult.
We therefore proceed using numerical simulations, a method that has been used before to study
religious markets and the dynamics of religious group growth (Iannaccone and Makowsky 2007;
Makowsky 2011; Montgomery 1999).

Consider first the results presented in Figure 6, where we explore the equilibrium sizes of
each of three groups as the strictnesses of the two affiliated groups vary, given the dynamics of
Equation (17) and an initial condition in which all groups are equally sized. In each figure, we fix
the strictness value of one of the groups, which we refer to as the “preexisting” group, and plot
the equilibrium group sizes as a function of the strictness of the third group, which we refer
to as the “new” group; this choice of terminology will be explained below. In all cases, we
have chosen parameter values s = 3 and z = .5, use uniform birth rates, and use a lognormal
distribution for R so that r − 1/2 ∼ Lognormal(μ, v2), where μ = −1/2 and v = 2. The last
assumption reflects the fact that income distributions are typically understood to be lognormal
(Liberati 2015), and our R distribution can be interpreted as capturing the value of outside-group
activities including work for pay. In the two-group case, these parameters and distribution would
allow a single group with strictness up to approximately .83 to survive alongside the unaffiliated
group, without the need to increase its birth rate beyond the baseline value. We will refer to this
strictness value as the absolute maximal strictness in our discussions below.

Some immediate observations stand out from Figure 6. First, if the strictness of the new
group is too high, then it cannot sustain its population and eventually dies out as expected given
our earlier analysis of the two-group case. Furthermore, the maximal strictness value that the
new group can adopt and still survive is always less than the absolute maximal strictness of .83,
again as expected. Perhaps less obvious, though, is the fact that the maximal strictness the new
group can adopt is not monotonic in the strictness of the preexisting group. When the preexisting
group has rather low strictness, the new group may adopt relatively high strictness values and still
survive, and as the strictness of the preexisting group increases toward approximately .5 in this
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case, the maximal strictness of the new group is reduced. But, as the strictness of the preexisting
group rises above .5, the maximal strictness of the new group also rises.

Another observation is that, as the strictness of the preexisting group increases, its maximal
possible size at equilibrium decreases, as expected; with higher strictness fewer people rank the
group highly in their group ordering, and it is less probable for those who do to join the group
given the probabilities α. But, more interestingly, the minimal possible size—overstrictnesses of
the new group—of the preexisting group is not monotonic in the preexisting group’s strictness.
When the preexisting group’s strictness is very low, a new group with only a slightly higher
strictness value will steal most of the members from the preexisting group, making the lowest
size for the preexisting group quite small. Similarly, if the preexisting strictness is quite high, any
sufficiently low strictness for the new group will completely eliminate the preexisting group. On
the other hand, when the strictness of the preexisting group is more moderate—say near .5 in this
case—its minimal size is still a relatively large fraction of the overall population.

These two observations become quite important when we imagine groups choosing their
strictness levels in a strategic way. Consider a scenario in which only a single, preexisting group
exists alongside the unaffiliated group. We might imagine that this group is free to choose whatever
strictness level it would like for itself, but should do so in a way that will optimize some objective
function. Suppose that the group’s main concern is that it have a high membership. Then, if
this preexisting group were to ignore the possibility of any new groups forming or breaking
away from it, it ought to choose an arbitrarily low strictness level, and thereby recruit almost
everyone. However, this choice would leave the preexisting group very vulnerable should a third
group form, since, as observed above, the new group could easily steal away almost all of the
preexisting group’s members by choosing its own strictness carefully. To guard against this, then,
the preexisting group should instead choose a somewhat moderate strictness value, such that a
new group entering would (a) have fewer possible strictness values to choose from in order to
survive and (b) have a minimized possible impact on the size of the preexisting group.

Note that this finding is similar to those found in prior studies (McBride 2008, 2010) but
with the added twist that the new group must avoid being too strict to prevent eventually dying
out due to loss of members. We thus see strong market pressures toward religious groups that
are not so strict, and that can only be countered with sufficiently high birth rates in the strictest
groups. This logic can help explain why some of the most successful religious groups that
have formed in the last two centuries in the United States, such as the Mormons, Seventh-Day
Adventists, and Jehovah’s Witnesses, have succeeded while being relatively strict but not ultra
strict. These relatively strict groups demand high levels of conformity from their members but do
not separate themselves from the rest of mainstream society to the same degree as the ultra-strict
groups. Because they are not completely separated, they can engage in active missionary efforts
to encourage switching into the group to supplement their relatively high (but not extremely high
as, say, the Amish) birth rates.

More insights into the behavior of the three-group case can be seen by examining Figure 7.
Here, we display the rates at which individuals transition between the three groups—given by
the numbers displayed above the corresponding arrows—and at which they are retained from
the births within the group—given by the numbers on the loops starting and ending on the same
group—once the system has reached equilibrium. Initial conditions are that every ngσ has an
equal size, and the equilibrium group sizes are N0 ≈ 0.344, N1 ≈ 0.429, and N2 ≈ 0.228. In
this case, we have employed the same lognormal R(r ) distribution used to construct Figure 6,
have chosen s = 5 and z = .5 with constant birth rates, and chosen strictness levels for the two
affiliated groups such that the fraction of people who rank each group at the top of their ordering
is equal for all three groups. Because of this, no group in this case has an inherent advantage
merely due to the number of people who might prefer that group above all others, which causes
the resulting dynamics to be more dominated by the probabilities of switching directly.
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Figure 7
Scaled flow rates of newly born individuals between groups or remaining within

a given group at equilibrium

Notes: See text for parameters used in this simulation.

Figure 7 reveals an interesting behavior not seen in prior models but that has been found
empirically. Note that there is a larger flow from the high strictness group to unaffiliated than
from high strictness to moderate strictness. Prior models based purely on ideal strictness levels
(McBride 2008, 2010; Stark and Finke 2000) would generally predict the opposite, as individuals
from the highest strictness group would tend to choose the next lowest strictness group when
switching groups instead of choosing to not affiliate with any group. Yet, it has been found that
religious switchers often became unaffiliated or switch to a group with very different characteris-
tics (Hungerman 2013, 2014). As Hungerman points out, his finding is puzzling in part because
the existing models predicted that a religious switcher should move to a relatively similar group
rather than become unaffiliated or switch to a very different group.
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Figure 8
Normalized group sizes as the birth rate of the strictest group varies

[Color figure can be viewed at wileyonlinelibrary.com]

Notes: Parameters are s = 5, z = .5, R lognormal so that r − 1/2 ∼ Lognormal(−1/2, 4) and strictnesses chosen so that
all groups have an equal fraction of the population that most prefers that group.

In our model, however, the transition probabilities that drive switching from one group to
another depend on several factors related to cultural transmission. It is much more likely for a
member of the high-strictness group to transition to the unaffiliated group than the moderate group,
all else being equal, because the individuals who are dissatisfied in the high-strictness group do
not get enough exposure to the moderate group to make switching to that moderate group likely.
The dissatisfied individuals become unaffiliated because that option is the only alternative that
is assumed to not require prior exposure. The empirical result documented by Hungerman can
thus potentially be explained by the multifaceted dynamics of cultural transmission. Parents and
religious groups are the prime drivers of vertical transmission, but opportunities for exposure to
other religious groups drive horizontal transmission. Some stay in the group, others leave after
they find something better, and others become unaffiliated when dissatisfied but not yet exposed
to something better. The larger lesson can be thus stated: it is not just the existence of religious
substitutes but the opportunity to be exposed to them that matter for religious switching.

Another matter of interest is how variation in birth rates affects the market outcomes. Stricter
groups tend to have higher fertility than less-strict groups, and these differences in birth rates
should contribute to differences in growth rates across groups (see Scheitle, Kane, and Hook
2011). To explore this possibility in the three-group case, we examine the dynamics of our model
when the unaffiliated and moderate groups have their birth rates fixed at 1 but the strictest group’s
birth rate is allowed to vary from less than 1 to above 1. Having the strict group with b > 1
matches the real world, where stricter groups have higher fertility, while the b < 1 case is for
reference.

Figure 8 shows how a change in the strict group’s birth rate b affects the long-run proportion
of the population in each of the three groups. Given that any b 	= 1 will lead to a nonconstant
total population size, the sizes in this plot are all normalized by total population, thus allowing
us to see the change in each group’s relative share of the market. As the strict group’s birth
rate increases, its long-run share increases, as is expected. The higher birth rate implies a larger
number of retained youth, who in turn will have more children that lead to even more retained
youth, and so on. Yet, observe that the increase in the strict group’s share comes primarily at the
expense of the moderate group, whose share decreases dramatically as the strict group’s birth
rate increases. At the same time, the unaffiliated group’s share is only slightly affected, due to
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Figure 9
Equilibrium sizes for a system with eight groups, as parameters s or z varies

[Color figure can be viewed at wileyonlinelibrary.com]

Notes: When not varying, s = 2 and z = 0.5. The distribution R(r ) is lognormal, and strictnesses are chosen such that
every group is ranked most highly by an equal fraction of the population. Initial conditions set each subpopulation to an
equal size

the underlying switching patterns similar to those in Figure 7. The larger switching from strict to
unaffiliated than from strict to moderate means that the strict group’s high birth rate does not lead
to much of a decline in the share of unaffiliated persons even though the share of moderate group
members drops significantly. This finding lends a new potential insight into our understanding of
a recent trend in American religion where strict groups are growing faster than less-strict groups,
but the unaffiliated share is growing, too. The high fertility of stricter groups, combined with
the dynamics of religious inheritance and switching, may actually contribute to the decline of
less-strict religious groups (such as the mainline Protestant groups) relative to the unaffiliated
group.

Many Groups

As the number of groups continues to increase past three, the system becomes ever more
complex, and even simple numerical experiments become unwieldy as there are too many pa-
rameters to vary. Nonetheless, we do provide here, as an example, some simulated results in the
case of eight groups. Unlike in the three-group case, we set each group’s strictness level and hold
it fixed for the duration of the system’s evolution as we vary s and z.

This exercise requires some decisions to be made about the exact distribution of R(r ) and
the strictness levels of the group. As before, we use a lognormal R(r ) for the distribution of the
opportunity cost of time outside the group. For the groups’ strictnesses, we initialize the system
in a way intended to give each group what might be considered an a priori fair chance to survive
in the long run. Specifically, the strictnesses are chosen so that each of the eight groups has an
equal fraction of the population that ranks that group most highly, and we initialize the system so
that each group begins with those individuals in its group who most prefer being in that group.
This initialization does not imply that group sizes will be equal in equilibrium because switching
rates in and out of groups will not be uniform due to variation in the amounts of time individuals
devote to their groups and due to the other dynamics of the system. It will, however, allow us to
monitor how the system evolves from what might be considered, in spirit, an equalized starting
position.

Figure 9 plots the equilibrium sizes of the eight groups as functions of s (with z fixed at .5)
and z (with s fixed at 2). As is clear from the figure, the relative sizes of the groups at equilibrium
vary significantly with s and z. Some interesting patterns are evident. For example, some of
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the low-strictness groups are among the smallest in size, despite the fact that they are equally
as preferred as other groups and generally more probable to join. Specifically, the group with
strictness .001 has a smaller population than the group with strictness .003 under all parameters
tested. Similarly, the .015 strictness group has a smaller size than the .035 group under many
parameters combinations. This may be related to the phenomenon observed in the three-group
case, whereby a group could steal away many members from a low-strictness group by having a
slightly higher strictness value. At the higher end of the strictness scale, we find that the general
trend is that the highest-strictness group does quite poorly, while the next two highest groups can
do very well. The origin of this effect is a bit clearer. For smaller s or z values, the .107 strictness
group evidently picks up all of the individuals who prefer it or the two highest groups; in these
parameter regimes, the lower α values for switching to the highest two groups cause them to
die out. But, as s or z is increased, the probability for joining the strictness .252 group increases
enough so that it now is able to recruit many of those who prefer it, as well as those who prefer
the highest-strictness group, all at the expense of the strictness .107 group, whose size drops
accordingly.

CONCLUSION

In this article, we have constructed a dynamic model for the sizes of religious groups, based
on a unidimensional categorization of groups by their strictness level, interpreted as the amount
of time they expect their members to spend within the group contributing to the common good.
This model is similar to previous such models in the way it accounts for how the strictness
of a group interacts with the preferences of the members of the overall population, who are
effectively described by some distribution over strictness preferences based on the individual’s
utility function for out of group activities. Based on an individual’s rate of utility for these
out-group activities r , all existing religious groups can be ranked from highest to lowest utility,
based on the group strictness levels. But, our model adds to the existing literature by including
a probabilistic component to group switching, such that an individual may not necessarily be
able to switch into her most preferred group and have to settle for one of lesser utility. Crucially,
the probability of an individual being able to join a group is directly related to the probability
of having encountered members of that group during time when both the individual and the
group members were engaged in out of group time. Hence, it is more probable to join larger
groups, as one is more likely to have encountered their members by sheer number, and to join
lower-strictness groups, as those individuals spend more time out of group during which they
might be encountered. At the same time, members of high-strictness groups may find it difficult
to switch to another group, as they will have spent little time out of group themselves. All of
these effects, including possible inheritance from parents to offspring of religious preferences
and possibly varying birth rates of the various groups, are summarized by a system of ordinary
differential equations for the various population sizes in time.

Analysis of our model has confirmed several phenomenon seen in prior models. For example,
we have shown that when the only options are a single group with some finite strictness and
another “group” with zero strictness (capturing the ability of people to be unaffiliated with any
group), the size of the affiliated group decreases with strictness, such that the group may not
be able to survive at equilibrium if its strictness is too high. This effect is not merely due to a
reduced fraction of the population that would thrive with such high strictnesses, and is intimately
tied to the decreased probability of individuals joining such a high-strictness group. High rates
of inheritance can mitigate this effect, as can group switching probabilities that require fewer
encounters with members before one can readily join a group. Importantly, we have shown that
a group of any strictness can survive if the birth rate of its members is high enough in relation to
the birth rate of nonmembers.
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Going beyond the two-group case, we also examined in some detail the case of three groups:
two affiliations and one unaffiliated group. This scenario is especially relevant when considering
the effects of new groups entering the religious market, and our numerical experiments here
seem to indicate that moderate-strictness groups are the most robust in terms of how they handle
new groups entering the marketplace, whereas very low or very high strictness groups may be
effectively driven out of the market in such situations unless they maintain very high birth rates.
We plan to consider this specific issue in much greater detail in future work, examining how
groups might arrange themselves with regard to strictness to best maximize the goals of the
group, be they simply gaining the largest following possible, maximizing the utility of their
members, or something else. A related future problem is modeling how religious groups may
splinter into offshoots with differing strictness values. Given that our model explicitly tracks the
number of each strictness preference subpopulation within each group, it may be plausible to
construct a splintering mechanism whereby when a critical number of members of a group have a
strictness preference that is substantially different from the group’s current strictness value, they
splinter off to form a new group.

Finally, we briefly examined from a numerical viewpoint a scenario with several (eight)
groups. Our results highlight the inherent complexity of the system, given that the eventual
equilibrium varies significantly with parameters, and general trends are somewhat difficult to
discern. Further exploration of a setting with several groups will be of interest to social scientists
trying to understand the rich dynamics of religious markets, including the forces that drive some
groups to thrive and others to die out. Future work using our framework could also explore larger
trends in religious markets, such as the recent rise of nonaffiliated persons in the United States.
Indeed, a key feature of our model is the explicit characterization of both the demand and supply
sides of the religious market, both of which are relevant to understand trends in religious market
outcomes. This work may also be of interest to a more general mathematical audience, who might
find in it a rich source of interesting mathematical problems.
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APPENDIX

Proof of Theorem 1

Consider a set of nonnegative integer values N1, Na , Nλ, Nb, and N0 such that the first N1

members of �r choose ti = 1, the next Na choose ti = ta = a + (1 − a)λ with 0 ≤ a ≤ 1, the
next Nλ choose ti = λ, the next Nb choose ti = tb = bλ with 0 ≤ b ≤ 1, and the final N0 choose
ti = 0. For any given individual, Ti = T − ti , where T = ∑

j t j for the state we are examining.
Then, for all those individuals choosing ti = 1, Ti = T − 1 and the lower bound in Equation (6)
becomes

1

2
√

N T
≡ R1.

Hence, so long as ri < R1, for i ≤ N1, all of the N1 individuals will be making their optimal
choice and not want to unilaterally switch. Similarly, for the individuals choosing ti = λ, Ti =
T − λ, the upper bound of Equation (6) becomes R1 while the lower bound of Equation (7)
becomes 1/2

√
N T + β = R1 + β. So, as long as R1 < ri < R1 + β for all N1 + Na < i ≤

N1 + Na + Nλ, all of the Nλ individuals will be making their optimal choice and not want to
unilaterally switch. In this same way, so long as ri > R1 + β for all i > N1 + Na + Nλ + Nb

all the N0 individuals will also be making their optimal choice. For those choosing ti = ta ,
Ti = T − ta , so that Equation (4) will be satisfied regardless of ta so long as ri = 1/2

√
N T = R1,

which must be the case for these individuals, so they are also playing their optimal choice.
Finally, for those choosing ti = tb, Equation (5) will be satisfied regardless of tb so long as
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ri = 1/2
√

N T + β = R1 + β, which must be the case for these individuals, so that they are also
playing their optimal choice. Since all ri values are accounted for and no individual can increase
utility by unilaterally switching strategy, this is a Nash equilibrium. Note, though, that as of
yet there is no guarantee that this Nash equilibrium will actually exist for a given �r and set of
parameters λ and β, since our proposed behavioral threshold R1 is defined in terms of T , but T is
in turn determined by the actual optimal strategies ti adopted by the individuals, which are based
off of R1.

We now show that such an equilibrium always exists. First, let F(r ) be the number of
individuals with ri ≤ r , and let P(r ) be the number of individuals with ri = r . Then the total
amount of time spent in group activities at the above Nash equilibrium is

T = [F(R1) − P(R1)] + [a + (1 − a)λ] P(R1)

+λ [F(R1 + β) − F(R1) − P(R1 + β)] + bλP(R1 + β)

= (1 − λ) [F(R1) − (1 − a)P(R1)] + λ [F(R1 + β) − (1 − b)P(R1 + β)] . (A1)

At the same time, we know from the definition of R1 above that T and R1 must be related via

T = 1

4N R2
1

(A2)

for the system to be at a Nash equilibrium. Then, so long as an R1 (and potentially corresponding
values for a and/or b) exists that satisfies both Equations (A1) and (A2), the Nash equilibrium
above exists. But this can always be made the case: Equation (A2) is a monotonically decreasing,
continuous function taking on all positive values as R1 ranges from 0+ to ∞, while Equation
(A1) is a nondecreasing function that can be made to take on any value between its minimum
of λ[F(β) − P(β)] to its maximum of N by adjusting a and/or b as needed as R1 ranges from
0 to ∞. Hence, the two curves can be made to intersect, and this intersection point is unique
with regard to R1 and therefore T , so the Nash equilibrium exists and the various Nx values are
all unique. If specific values of a and/or b must be chosen so that the two curves intersect, then
upon doing so both Equations (4) and (5) will automatically be satisfied, as by moving Ti to the
left-hand sides of these equations and substituting the ri value of the individuals playing ta or tb,
both equations simply become T = 1/4N R2

1 , which will be true. Note, though, that if the Nash
equilibrium includes both those playing ta and those playing tb, the values of a and b that can be
used to satisfy these equations may not be unique, though the R1 and T values they give rise to
will be.

Proof of Theorem 2

To prove our claim, we first note that g(0) = 0 and g( f ) = f (1 − K )(p( f ) − 1) < 0 since
p( f ) < 1 when f < 1. We will then need to take the first- and second-order derivatives of g(n):

g′(n) = ( f − K n)p′(n) − K p(n) + K − 1, (A3)

g′′(n) = ( f − K n)p′′(n) − 2K p′(n), (A4)

where

p′(n) = s(1 − λ)
(1 − n)s−1

(1 − λn)s+1
, (A5)
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p′′(n) = s(1 − λ)
(1 − n)s−2

(1 − λn)s+2
[−(s − 1)(1 − λ) + 2λ(1 − n)] . (A6)

Therefore,

g′′(n) = s(1 − λ)
(1 − n)s−2

(1 − λn)s+2
(( f − K n)[−(s − 1)(1 − λ) + 2λ(1 − n)]

− 2K (1 − n)(1 − λn))

= s(1 − λ)
(1 − n)s−2

(1 − λn)s+2
[(2K + (s − 1)(1 − λ)K − 2λ f )n

− (2K + (s − 1)(1 − λ) f − 2λ f )]. (A7)

Note that s(1 − λ) (1−n)s−2

(1−λn)s+2 > 0 on [0, 1). Let us consider the function

h(n) = (2K + (s − 1)(1 − λ)K − 2λ f )n − (2K + (s − 1)(1 − λ) f − 2λ f ), (A8)

which is a linear function of n. The slope of h can be rewritten as

(1 + λ)K + s(1 − λ)K − 2λ f ≥ (1 + λ)K − 2λ f > 0, (A9)

since 0 < λ < 1, s > 0, and 0 < f ≤ K ≤ 1. Similarly, the negative intercept of h can be rewrit-
ten as

2K + s f (1 − λ) − (1 + λ) f ≥ 2K − (1 + λ) f > 0. (A10)

So h(n) is an increasing function that attains 0 at

n∗ = 2K + (s − 1)(1 − λ) f − 2λ f

2K + (s − 1)(1 − λ)K − 2λ f
. (A11)

If s ≤ 1, then since K ≥ f , n∗ ≥ 1. So in this case g′′(n) < 0 on [0, 1) so that g′(n) is strictly
decreasing on [0, 1). So, if g′(0) > 0 there exists one nontrivial zero point n0 of g(n) on [0, 1)
with n0 < f and g′(n0) < 0; otherwise we only have a trivial zero point of g(n) at n = 0.

If s > 1, then n∗ < 1, so g′(n) is decreasing on [0, n∗) and increasing on (n∗, 1). We notice
that

− h( f ) = 2K + (s − 1)(1 − λ) f − 2λ f − f (2K + (s − 1)(1 − λ)K − 2λ f ) (A12)

= (2K − 2λ f )(1 − f ) + (s − 1)(1 − λ) f (1 − K ) (A13)

> (2K − 2λ f )(1 − f ) (A14)

> 0. (A15)

Recall that g′′(n) is positively proportional to h(n), so since h( f ) < 0, g′′( f ) < 0, so f < n∗

since g′′(n) < 0 only for values less than n∗. Then all the arguments for the case above with s ≤ 1
still hold on the region [0, f ]. Namely, if g′(0) > 0 there will be one nontrivial zero point n0 of
g on [0, f ) and g′(n0) < 0, whereas if g′(0) < 0 there are no zero points of g on [0, f ) except
for the trivial one at n = 0; in both cases g′( f ) < 0 and therefore g′(n∗) < 0. Furthermore, since
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g′(1) = −1 < 0, g′ must be negative on all of [ f, 1], so there are no zero points of g on [ f, 1],
and n0 is the only possible nontrivial zero point of g.

Proof of Theorem 3

Note gb(0) = 0, while gb(1) = b(K − 1) < 0. Then if g′
b(0) > 0, gb must have at least one

root on the interval (0,1). The derivative

g′
b(0) = f s(1 − λ) + bK − 1.

So, if b > bmin ≡ [1 − f s(1 − λ)]/K , the stricter group can survive with a finite fraction of the
population at equilibrium.


